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Abstract. Nowcasting models based on machine learning (ML) algorithms
deliver a noteworthy advantage for decision-making in the public and private
sectors due to their flexibility and ability to handle large amounts of data.
This article introduces real-time forecasting models for the monthly Peruvian
GDP growth rate. These models merge structured macroeconomic indicators
with high-frequency unstructured sentiment variables. The analysis spans
January 2007 to May 2023, encompassing a set of 91 leading economic
indicators. Six ML algorithms were evaluated to identify the most effective
predictors for each model. The findings underscore the remarkable capability
of ML models to yield more precise and foresighted predictions compared
to conventional time series models. Notably, the gradient boosting machine,
LASSO, and elastic ner models emerged as standout performers, achieving a
reduction in prediction errors of 20% to 25% compared to autoregression
and various specifications of dynamic factor model. These results could be
influenced by the analysis period, which includes crisis events featuring high
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uncertainty, where ML models with unstructured data improve significance.
Clasification JEL: C32, C53, E37, C52, E32.
Key Words: nowcasting, machine learning, GDP growth.
Resumen. Los modelos de nowcasting basados en algoritmos de Machine
Learning (ML) ofrecen una ventaja notable para la toma de decisiones en
los sectores publico y privado debido a su flexibilidad y capacidad para
manejar grandes cantidades de datos. Este documento presenta modelos
de pronéstico en tiempo real para la tasa de crecimiento mensual del PIB
peruano. Estos modelos combinan indicadores macroeconémicos estructu-
rados con variables de sentimiento no estructurados de alta frecuencia. El
andlisis comprende desde enero de 2007 hasta mayo de 2023, abarcando un
conjunto de 91 indicadores econdmicos principales. Se evaluaron seis algo-
ritmos de ML para identificar los predictores mds eficaces de cada modelo.
Los resultados subrayan la notable capacidad de los modelos de ML para
producir predicciones mds precisas y previsoras que los modelos conven-
cionales de series temporales. En particular, Gradient Boosting Machine,
LASSOy Elastic Net destacaron por sus resultados, logrando una reduccién
de los errores de prediccién de entre el 20% y el 25% en comparacién con
los modelos AR y varias especificaciones de DFM. Estos resultados podrian
estar influenciados por el periodo de anilisis, que incluye acontecimientos
de crisis con un alto grado de incertidumbre, en los que los modelos ML
con datos no estructurados mejoran la significacién.
Clasificacién JEL: C32, C53, E37, C52, E32.

Palabras clave: nowcasting, machine learning, crecimiento del PBL.
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1. Introduction

Real-time decision-making is a significant challenge for policymakers who
often face delays in obtaining updated information about macroeconomic
indicators. In most cases, the economic variables present a delay of 3045
days on average, including the time for revisions and retrospectives. Never-
theless, the continuous strides toward the new generation of high-frequency
data have changed how prediction models address the inherent uncertainty
in this information. As a result, in the past few years, central banks and inter-
national institutions have adopted methodological focuses that incorporate
machine learning and take advantage of the abundant quantities of data
that come from search engines and social media, as shown in Araujo et al.
(2023); Chakraborty and Joseph (2017); Richardson and Mulder (2018).

These automated learning techniques have gained greatly in popularity
compared to the conventional focus of traditional time series models to
project macroeconomic variables. An often highlighted characteristic of
these algorithms is their capacity to formulate parametric selections in
large amounts of data sets, based on training a specific percentage of the
model’s information. The objective of this paper is to explore the benefits of
utilizing several machine learning methodologies. We do so by combining
the use of conventional leading indicators (structured data) and sentiment
data indexes (non-structured or unstructured data) to forecast in real-time
(nowcast) Peru’s monthly real GDP growth rate.

The data set consists of both local and international variables, which can
be broken down into 53 structured variables and 38 nonstructured variables,
giving a total of 91 predictors. We examine these predictive variables based
on the model, between September 2014 and May 2023, to evaluate the
optimum performance of each. Furthermore, following Romer and Romer
(2008) we performed a predictive accuracy analysis using two models as
reference, the traditional autoregressive time series and a dynamic factor
model, based on the leading indicator of electricity production used in the
economic literature and by Peruvian political and economic consulting firms.
This facilitates an exhaustive evaluation of the performance of machine
learning algorithms.

The results show that the immediate predictions of machine learning
models are more robust than the benchmark auto-regressive model and
perform better than dynamic factor model (DFM). Specifically, the random
forest, gradient boosting machine, and adaptive LASSO models demonstrate a
superior ability to reduce the average projection error in a range of 20-25%.
In addition, following the methodology proposed by Armstrong (2001), we
corroborate that using the average projection value all the machine learning
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algorithms adds significant value to the root mean square error (RMSE),
which contributes positively to a more precise prediction of GDP. Even
though other models—r7idge, the least absolute shrinkage and selection
operator (LASSO), and elastic vet—do not reach the same level of predictive
ability as the aforementioned machine learning (ML) methodologies, they
still outperform the control model.

Further, the proof of forecasting evaluation and consistency assessment
confirms that most of the machine learning models improve the predic-
tion significantly, in line with previous literature applied in other contexts
(Richardson & Mulder, 2018; Varian, 2014; Zhang et al., 2023).

This article contributes to the literature that highlights the success of
machine learning applications in contrast to more traditional methodo-
logies.” However, given the lack of evidence in Latin America,’ and in
particular Peru,* regarding the use of these algorithms in conjunction with
non-structured data, this research project also highlights the need fore-
ground a discussion about what these models entail. Barrios et al. (2021),
Richardson and Mulder (2018), and Dépke et al. (2017) have shown
through the implementation of diverse machine learning algorithms that
the results of these methods are better suited to carrying out forecasts in
real-time when a large amount of information is available to the forecaster.
For example, Longo et al. (2022) carried out a forecast of quarterly GDP in
the US for the combination of a neuronal recurrent network and a dynamic
factor model with a temporal variation of the median. This combination of
models demonstrated a substantial decrease in the forecast error, as well as a
capability to capture the period of recession associated with the COVID-19
pandemic and the subsequent economic recovery. Similarly, in the case of
El Salvador and Belize, Barrios et al. (2021) implemented a large array of
machine learning methods and predictive variables to forecast the quarterly
growth of GDP. The results concluded that the application of these tools
represents a robust alternative to prediction, and its benefits led the authors
to recommend their use in other countries in the region. Other researchers
have extended the application of machine learning models beyond GDP
to the likes of forecasting, inflation, yield curve, and active prices. These
efforts have yielded notable results in precise forecasting (Giglio et al., 2022;
Medeiros et al., 2021).

2 Itis important to mention the pre-publication of our paper, Tenorio & Perez (2023), by the Cen-
tral Bank of Peru and the Peruvian Economics Association as well as at meetings of economists
organized by the Central Bank of Peru, where we received valuable feedback from other experts.

3 See Barrios et al. (2021).

4 See Escobal D’Angelo and Torres (2002); Perez Forero (2018).
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It is still important to highlight that the implementation of these methods
still presents challenges, sparking major debates. For instance, Green and
Armstrong (2015) and Makridakis et al. (2018), when comparing multiple
models of machine learning, found that the results of the forecasting were
less significant in comparison with statistical smoothing approaches and
ARIMA models. These authors warned that the computational complexity
inherent to variable selection and use in the machine learning model makes
immediate forecasting difficult and less practical for policymakers.

The remainder of this article is structured as follows. The next section
presents a literature review that explores the relevance of the nowcasting
methodology in the context of machine learning and big data, both at the
national and international levels. Thereafter, a section is devoted to the
methodology, models, and data sets used. The results are then displayed
in a specific section, followed by the robustness tests and the conclusion.

2. Literature review

Economists aim to provide the most accurate GDP forecasts using the most
efficient approaches. Stock and Watson (1989) were the first to propose an
economic cycle index using factor models. However, a critical challenge is
the increase in uncertainty in the estimates, an area in which traditional
models, which use a limited set of variables, often fall short. The literature
has therefore been exploring new models using machine learning techniques
to balance the trade-off between bias and variance.

Nowcasting methods seeks to address the issue of extended delays in
the publication of key economic aggregates, as well as aims to predict the
present, the very near future, and the very recent past (Banburaetal., 2013).
A traditional reference nowcasting model is the DFM, widely used in central
banks to predict GDP (Bdnbura & Riinstler, 2011; Bok et al., 2018; Gian-
none et al., 2008; Gonzélez-Astudillo & Baquero, 2019; Rusndk, 2016).
Two seminal studies have formalized this process into statistical models. On
one hand, Giannone et al. (2008) proposed a methodology to assess the
marginal impact of the publication of monthly-updated data on forecasts of
quarterly-published real GDP growth. The authors proposed a method to
track the real-time flow of information that central banks monitor through
large datasets with staggered publication dates. The proposed method works
by updating primary forecasts (forecasts for the current quarter) each time
new higher-frequency data is published. This is done using progressively
larger datasets that reflect the unsynchronized data publication dates.
On the other hand, Evans (2005) performed real-time estimations of the
current state of the US economy using an approach that included data
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complexity and provided useful information about the relationship between
macroeconomics and asset prices. The author modeled monthly time series
using a DFM in a state-space system. Once the state-space representation
was settled, Kalman filter techniques were estimated for GDP forecasting,
as they automatically adapt to changes according to the data available. In
the present study, we followed the proposals of Evans (2005) to perform
our DFM specifications in addition to the implementation suggestions of
Doz et al. (2012).

An additional advantage of nowcasting models is the constant impro-
vement in wider information availability and data frequency heterogeneity
(Gonzdlez-Astudillo & Baquero, 2019; Zhang et al., 2023). Thus, ML
methods are now being incorporated to enhance the nowcasting approach.
ML algorithms deliver better performance in handling large amounts of
data, capturing non-linear relationships, and adapting to changing econo-
mic conditions.

ML methods provide more accurate predictions by incorporating various
variables and sources of unstructured data. As noted by Athey (2018), these
techniques can be divided into two main categories: unsupervised and
supervised ML. The former seck groups of observations that are similar
in terms of their covariance. Thus, a “dimensionality reduction” can be
performed. Unsupervised MLs commonly use videos, images, and text
as sources of information, in techniques such as K-means clustering. For
instance, Blei et al. (2003) applied pooling models to find topics in textual
data. In turn, Woloszko (2020) presented a weekly indicator of economic
activity for 46 OCDE countries and the G20 using search data from Google
Trends. The author illustrated the power of prediction of specific topics,
including “bankruptcies,” “economic crises,” “investment,” “baggage,” and
“mortgages.” Calibration was performed using a neural network that captu-
red nonlinear patterns, which were shown to be consistent with economic
intuition using ML Shapley values interpretation tools.

On the other hand, supervised ML algorithms entail the use of a group of
variables or features to predict a specific indicator result (Varian, 2014). The
variety of supervised ML regression methods in circulation include LASSO,
ridge, elastic net, random forest, regression trees, support vector machines, neural
nets, matrix factorization, and model averaging, among others.

Several studies highlight the advantages of supervised ML models
over traditional methods in forecasting macroeconomic series. Ghosh
and Ranjan (2023) presented a compilation of ML techniques and con-
ventional time series methods to predict the Indian GDP, estimating ML
in the DFM context with financial and economic uncertainty data. They

10



GDP nowcasting with machine learning and unstructured data

employed random forest and propher models along with conventional time
series models such as ARIMA to nowcast Indian GDP, finding that hybrid
models stand out. Similarly, Richardson and Mulder (2018) detected that
a ridge regression model outperformed a DFM for a GDP nowcast GDP of
New Zealand. Muchisha et al. (2021) built and compared ML models to
forecast the GDP of Indonesia. They evaluated six ML algorithms, random
forest, LASSO, ridge, elastic net, neural networks, and support vector machines,
using 18 variables between 3QQ2013 and 4Q2019. Their results illustrate the
outstanding performance of ML versus auto-regressive models, especially
the random forest model.

For their part, Zhang et al. (2023) tested ML, DFM, and static factor
and MIDAS regression models to nowcast the GDP rate growth of China,
observing the superior accuracy of ML compared to DEM. Ridge regression
surpassed all other ML models in prediction and early anticipation of cri-
ses such as the global financial crisis and COVID-19. Kant et al. (2022)
compared models applied to the Dutch economy between 1992 and 2018,
with random forest algorithms standing out. Using novel variables such as
Google Search and air quality, Suphaphiphat et al. (2022) ran standard
DFM and ML on European economies during normal times and crises.
They showed that most MLs significantly outperformed the AR (1) reference
model; DFM tended to perform better in normal times, while many of the
ML methods excelled in identifying turning points. Moreover, ML proved
able to predict adequately in very disparate economies. Meanwhile, Barrios
etal. (2021) assessed adjusted ML models on the Belizian and Salvadoran
economies and found that they delivered robust predictions, adding to the
evidence that ML algorithms are effective in very different country contexts.

Another relevant consideration is Big Data due to its benefits in broade-
ning the range and use of available data to provide valid information on the
behavior of the economy and anticipate certain economic indicators (Einav
& Levin, 2014). As mentioned in Eberendu et al. (2016), the digital era
has seen the emergence of digital news platforms, social media technolo-
gies, smartphones, and online advertising. Nevertheless, many of the new
data types—text, XML, email, images, videos, and so on—lack a pre-fixed
format, raising new challenges and attracting new research. Eberendu et al.
(2016) proposed a general description of this type of data. Some studies show
relevant results on the use of these techniques. For instance, Varian (2014)
proposed that a search for “initial claims for unemployment” in Google
Trends offered good basis on which to forecast unemployment, CPI, and
consumer confidence in countries such as the US, UK, Canada, Germany,
and Japan. The author focused on immediate out-of-sample forecasting and

11
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extended the Bayesian structural time series model using the Hamiltonian
sampler for variable selection, obtaining good results for unemployment
but less so for CPI or consumer confidence.

In the Latin America context, Barrios et al. (2021), Richardson and
Mulder (2018), and Déopke et al. (2017) have shown through the imple-
mentation of diverse ML algorithms that the results are more promising
for carrying out forecasts in real-time when a large amount of information
is at the researchers’ disposal. Caruso (2018) noted the benefits of using
external indicators in short-term GDP forecasting in Mexico, assessing a
DFM model that deals with the mixed frequency of macroeconomic indi-
cators. Gélvez-Soriano (2020) showed that the bridge equation model did
better than DFM and principal components analysis in predicting monthly
Mexican GDP. Corona et al. (2022) illustrated the gains on DFM models
of including nontraditional variables such as Google Trends with regard to
the Mexican Global Economic Activity Indicator (IGAE). Bolivar (2024)
nowcasted monthly economic growth by using machine learning algorithms
and integrating data from both traditional and remote-sensing sources,
for the case of Bolivia. The results indicated that these tools (ML and Big
Data) represented a solid alternative to prediction, and their benefits lend to
usage in other countries in the region. Other researchers have extended the
application of ML models to GDP, inflation, yield curve, and active prices.
These efforts have yielded notable results in precise forecasting (Giglio et
al., 2022; Medeiros et al., 2021).

In the case of the Peruvian economy, previous works have focused on the
anticipated estimation of monthly GDP growth based on a set of leading
indicators (structured data). However, the limited application of machine
learning models and the inclusion of unstructured data in GDP forecasting
is evident. For instance, Escobal D’Angelo and Torres (2002) built a joint
leading indicator that allows the tracking of Peruvian GDP with only 14
variables. Kapsoli Salinas and Bencich Aguilar (2002) performed a forward
GDP estimation with a nonlinear neural network model. In turn, Etter
et al. (2011) proposed a leading indicator using an expectations survey
conducted by the Central Bank of Peru (BCRP). Martinez and Quineche
(2014) forecast the GDP growth rate based only on the electricity pro-
duction indicator. Following Aruoba et al. ( 2009), Forero et al. (2016)
proposed a leading indicator of Peruvian economic activity, obtained as a
common unobservable component that explains the co-movement among
six variables: electricity production, domestic cement consumption, adjusted
domestic sales tax, chicken sales, metal mining production, and real GDP.
Finally, Pérez Forero (2018) attempted to solve the difficulties about best
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leading indicators selection under the approach of Varian (2014). Perez
Forero estimated a steady state system through the Bayesian Gibbs-Sampling
methods and a spike-and-slab to perform stochastic search variable selection
(SSVS), calculating the probability of inclusion of a large set of variables in
the best model to predict GDP.

Finally, the studies applied to Peru and focused on implementing
machine learning techniques include those by Tenorio and Perez (2024)
and Tenorio and Perez (2023), which are working papers that were updated
and reviewed. These pre-publications have provided valuable feedback and
insights from experts on the subject, allowing us to refine our contribution.

3. Methodology

This section briefly describes the different regularization methods and
decision trees used to select the best predictors for the monthly nowcasting
model and calibrate the hyperparameters, in a series from January 2007 to
May 2023. The six methods that are used are random forest (RF), gradient
boosting machine (GBM), LASSO regression, ridge, elastic net, and, as a
benchmark, an autoregressive (AR) and dynamic factor model (DFM).

3.1 Autoregressive model (AR)

As a starting point, we established an autoregressive AR model for monthly
GDP growth (y,), which reflects the value of a variable in terms of its pre-
vious values. A model of order 1, following these characteristics, exhibits
the following structure:

y=PBo+Biye1t+e (1)
e, ~ N(0,0%)

where B is a constant term, B; is a parameter, and e, is a term that follows
a normal distribution with a mean of zero and a constant variance 62 and
captures the randomness of the model.

3.2 Stepwise least squares

Stepwise regression is a method that sequentially fits a model by adding or
removing variables iteratively based on different statistical criteria, with the
aim of minimizing the mean squared error. This model combines simplicity
and robustness with which to improve the model’s projection capability.
The variable selection process can be carried out through either forward
selection, backward selection, or a combination of both known as bidirec-
tional stepwise regression. This study aims to find the best choice within
the universe of 91 leading indicators.

13
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3.3 Dynamic factor model (DFM)

DFMs are estimated in the form of state-space systems using the Kalman
filter and various types of algorithms. Following the proposal by Doz et al.
(2011), one of the most popular in the economic literature is the expectation
maximization algorithm due to its robust numerical properties, which make
it an efficient estimator for bigger datasets.

The canonical reference DFM can be described as follows:

x,=Bf,+e, e, - N(0O,R) (2)
fe= Z;J: 1 A}'ft—j +u,  u~N(0,D) 3)

Where equation (2) is identified as the measurement equation, and
equation (3) as the transition equation, allowing the unobservable factor
f; to evolve as in a vector autoregressive model. These equations do not
include trends or intercepts, as the included data must be stationary and
standardized before estimation.

The matrix system is as follows:

x.: a vector of 7 x 1 observable time series at time # (x,, ..., x,,)’, which
allows for missing data.

f: avector of rx 1 factors at time t: (f, ..., f)'.

B: a matrix of 7 x 7 observable time series with lag ;.

D: a matrix of 7 x 7 state covariances.

R: a matrix of 7 x 7 measurement covariances. This matrix is diagonal
under the assumption that all covariances between the series are explained
by the factors E [x; |x_;,, f]= b, f, Vi, where b; is the i - th row of B.

This model can be estimated using a classical form of the Kalman filter and
the maximum likelihood estimation algorithm, after transformation into a
state—space model. In a VAR expression, it would be as follows:

x,=CF,+e, e, ~N(0O,R) (4)
F,=AF_;+u, e -N(0,Q) 5)
As a benchmark model, we use the efficient estimation of a DFM via the

EM algorithm on stationary and seasonally adjusted data with time-invariant

system matrices and classical assumptions, while permitting missing data
(Bdnbura & Modugno, 2014).

3.4 DPenalized regression models

These methodologies are employed to optimize the selection of predictor
variables and control the model complexity, which is crucial to preventing

14
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overfitting in high-dimensional settings. The literature suggests different
forms of penalization to estimate the parameters f8; accurately. We will
briefly explore the characteristics of the ridge, LASSO, elastic net, and adap-
tive LASSO models, emphasizing how these techniques allow for proper
weighting of coefficients and how their application affects the inclusion and
relevance of variables in the final model.

3.4.1 Ridge regression

The ridge model is defined by adding a penalty based on the sum of squa-
res of the coeflicients of the predictor variables. This penalty compels the
coeflicients to be very small and prevents them from taking extremely high
values, thus reducing the influence of less relevant variables. To estimate
the coefficients 5749, the equation must be expressed as:

p

minﬁ(i(yi_ﬁo_ injﬁj)z +Azp:ﬁj2> (0)

j=1 j=1

Where y; is the observed value of the dependent variable for observation
I, x; is the value of predictor variable j in observation i, f; is the coefhicient
associated with predictor variable j, p is the number of predictor variables,
and 2 is the regularization hyperparameter that controls the magnitude of
the penalty. The sum of the terms f7in the penalty prevents the coefficients
from reaching large values, thereby contributing to stability and reducing
the risk of overfitting.

3.4.2 LASSO regression
The LASSO model, introduced by Tibshirani (1996), employs a penalty

based on the sum of the absolute values of the coefficients of the predictor
variables. This penalty forces some coefficients to reach exactly zero, automa-
tically selecting a subset of more relevant predictor variables and eliminating
less significant ones. The LASSO coefficients £ are estimated as:

p

minﬁ(i()’i—ﬁo— injﬁj)z +AZP: |ﬁj|> 7)

i=1 j=1 j=1

The change lies in the hyperparameter A which, by summing the absolute
values of the coefhcients |8 in the penalty, leads to model selection and
simplification by allowing some coefficients to be zero. This provides a more
precise variable selection approach regarding the degree of importance of
all variables.

15
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3.4.3 Elastic net regression

The elastic ner model combines appropriately the constraints of both the
LASSO and ridge models. Zou and Hastie (2005) noted that its advantage
lies in correcting the model when the number of regressors exceeds the
number of observations (p > 7), which improves variable grouping. The
penalty includes both the sum of the absolute coefficient values and the sum
of squares of the predictor variable coefficients. The equation for estimating
the coefficients 5 is expressed as:

mmp(Z@, Bo- Z Uﬂ,)2+7tz (@lfl +(1- a)ﬁ2)> ®)

where 1 is the global regularization hyperparameter and « is the hyper-
parameter that controls the mix between LASSO (a = 1) and ridge (a = 0)
penalties. The combination of both penalties in the elastic ner model allows
for a higher degree of flexibility in variable selection and coefficient alignment.

3.4.4 Adaptive LASSO regression

Following Zou (2006) the adaptive LASSO model is a variant of the LASSO
model that introduces a penalty approach to adaptively adjust the magnitude
of the penalties for each coefficient of the predictor variables. This adapta-
tion allows for penalties to be different for different coefficients, potentially
resulting in a more precise selection of relevant variables. Liu (2014) argued
that this process can be efficiently performed using the LARS algorithm.
The equation for the adaptive LASSO model (B4™) is expressed as:

mznﬁ<2(y, po- Z Uﬁ,)ZHwa,) ©)

Where 2 is the regularization hyperparameter, and w; is the adaptation
factor for the coefhicient ;. It is important to note that the exact form of
the adaptation factors w; depends on the specific implementation and may
vary. In general, these factors are calculated based on the absolute values of
the coefficients in previous iterations of the algorithm.

3.5 Decision tree models

Decision Tree models are machine learning algorithms that represent decisions
and actions in the form of a tree. In the present case, we will present two algo-
rithms where each internal node of the tree represents a feature or attribute,
and each branch represents a decision or rule based on that attribute. The
training data is divided based on these decisions until it reaches leaf nodes,
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which correspond to the predictions, in our case, related to monthly GDP
growth. The use of these trees also allows for an improvement in variable
selection by handling non-linear relationships in the model.

3.5.1 Random forest

This method is based on constructing decision trees using variables from a
matrix X and a random selection of features. In addition, it involves rando-
mly selecting subsets of data from X with replacement to train each tree in
the ensemble, distinguishing it from other tree-based techniques. Each tree
generates a prediction of the target variable (in this case, monthly GDP),
and the final model selects the most voted prediction in the ensemble of
trees (Breiman, 2001). According to Tiffin (2016) random forest has the
advantage of combining predictions from multiple trees and selecting those
with lower error, thereby reducing the influence of potential individual errors
(if the correlation between trees is low). In sum, this method recursively
divides the data in y; into optimized regions and uses variable-based criteria
to forecast the target variable, then calculates the dependent variable as the
average (avg) of these regions.

J00 =) enlOce X,)s 6 = avg i b € X,) (10)

The algorithm has certain advantages, such as efficiency in handling large
datasets with many variables, providing an estimation of variable impor-
tance, and offering an unbiased estimation of generalization error during
its construction (Breiman, 2001). However, it also has disadvantages, such
as difficulty in interpreting results beyond predictions and computationally
intensive demand for training and hyperparameter tuning. Therefore, it was
necessary to fine-tune this model through cross-validation, thus achieving
better performance on unseen data.

17
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Figure 1
Simple representation of the random forest algorithm

R ' - B
.. . Random
Training o Plurality
- P Prediction 2 e —  Forest
Data N of Votes o
.. Prediction
m‘\ R eicton 3

Source: Compiled by authors.

3.5.2 Gradient Boosting Machine

This algorithm builds a sequence of decision trees in which each tree is ficted
to the residual errors of the previous tree. Therefore, each iteration obtains
a new tree that minimizes the remaining error. These prediction models are
trained using the errors from the accumulated set of weak predictions’ in
a way that provides a progressive improvement in regression performance
compared to the initial model (Natekin & Knoll, 2013).

In essence, each tree in this algorithm contributes its prediction, which
is added to the sequence of predictions from previous trees to enhance the
final prediction of the model. According to Boehmke and Greenwell (2020),
this method can be summarized by the following equation:

FQp) = ZFZ(X) (11)
z=1

Where z is the number of trees that cumulatively sum the errors from
all preceding trees. That is, if the first tree y = F;(x), then the second tree
will be F,(x) = F,(x) + e; and so on, successively, to minimize F(x) as the
following expression:

5  Brownlee (2016) indicated that weak models are not necessarily weaker than accurate models, as
they have the advantage of being able to correct the overfitting problem.
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L = Min ZL(VZ, F,(x) (12)
A

Therefore, as new decision trees are incorporated, the accuracy of the

final projection gradually, improves resulting in more precise forecasts for
monthly GDP.

Figure 2
Simple representation of the gradient boosting machine algorithm
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Source: Boehmke & Greenwell (2020)

3.6 Data

The model database comprises a variety of variables, ranging from macro-
economic and financial data to unstructured information related to senti-
ment or “trend” (See Tables 6, 7, and 8). This information set encompasses
consumption indicators, such as credits, deposits, consumer surveys, and
local activity indicators, including electricity production, hydrocarbons,
economic expectations, and others. Investment indicators are also incorpora-
ted, including internal cement consumption, capital goods imports, and so
forth. A set of monetary indicators covering consumer and producer price
indices, among others, is included. It is important to highlight the inclusion
of economic sector variables related to fishing and agricultural production,
which constitutes a unique feature compared to other nowcasting models.
Furthermore, the database covers information on foreign trade, the labor
market, and climate data.

In addition to conventional variables, we have incorporated unstruc-
tured data related to perception in various areas, such as the economy,
consumption, labor market, politics, tourism, government support, and
natural phenomena. These variables can capture the general sentiment of the
population and its potential influence on economic indicators. In particular,
the use of vast search engines, such as Google, stands out as a powerful tool
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for providing real-time information. Scott and Varian (2013) have pointed
out that the inclusion of online searches as variables provides substantial
benefits to short-term forecasting models, especially in detecting periods
of high volatility. This is demonstrated in the ability to anticipate both the
recession caused by the COVID-19 pandemic and the subsequent period
of economic recovery. Consequently, the effectiveness of this approach has
been widely investigated and adopted by central banks and international
institutions. Thus, we estimated ten groups (See Table 6) of variables with
the aim of tracking Google search queries, which are updated daily and
can be downloaded from Google Trends. The selection of words (variables)
was intended to convey different aspects of the economys; for instance, the
consumption-related group is constructed based on searches for words like
“Kia,” “restaurants,” “Toyota,” “credits,” “loans,” “deals,” “mortgages,” and
“cinema.”

Once this textual data was converted into numerical data, we evaluated
the inclusion of these series in the estimations of an optimal model using
Gibbs sampling, following Garcia-Donato and Martinez-Beneito (2013).
For this we used 50,000 iterations, an initial burning of 1,000 iterations,
and constant beta priors (see Figure 10). This indicates the high relevance
of the group of unstructured variables, such as the search frequency for
the likes of “flights,” “peruflight us,” “visa,” or “El Nifio”, which reflect the
dynamics of tourism and climatic conditions, among others. Furthermore,
we compared the results of this estimation with another by confining the
sample to 2019 (see Figure 11); unstructured data becomes more impor-
tant when incorporating the pandemic period into the sample, which is
in line with the findings of Richardson and Mulder (2018) and Woloszko
(2020). Moreover, we performed a contemporaneous correlation analysis
of these variables against monthly GDDP, finding that more than half of the
unstructured sample has a correlation greater than 30%.

The data frequency for constructing the model ranges from daily to
monthly records. We assessed each variable in terms of its predictive abi-
lity regarding monthly GDP growth. Then, to facilitate comparison and
analysis, we transformed these variables into annualized monthly percentage
changes and standardized them. This standardization process allowed us to
maintain a common reference framework and ensure that different variables
contributed equitably to the model.

After obtaining a total set of 91 predictors spanning January 2008 to
May 2023, we conducted the evaluation and selection of optimal predictors
independently for each machine learning algorithm employed. We specify
how we handled the data for the forecast update process in Section 4.1, and
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how we tested the model accuracy comparison in Section 4.2. This approach
enabled us to refine the process of choosing the most efficient prediction
model, thereby achieving enhanced performance.

3.7 Forecast evaluation strategy

To assess the accuracy in the projection of each model we used the root
mean square error (RMSE), following the equation:

RMSE = (13)

Where y, represents the observed value of monthly GDP growth, y, is the
forecasted value, and T is the total number of projections made. Following
this initial assessment of prediction fit, we employed the method proposed
by Diebold and Mariano (1995) to determine if the projections generated
by each machine learning model significantly differed from the benchmark
model.

4. Results

This section begins with a brief description of the database training period
and hyperparameter optimization estimation, and finishes with a thorough
analysis of the results.

4.1 Estimation and hyperparameter calibration

To estimate machine learning models, the selection of hyperparameters plays
a crucial role in terms of efficiency and accuracy. Furthermore, calibrating the
hyperparameters of each model with a smoothing range provides flexibility,
reduces noise, and enhances forecast stability and accuracy.

The optimal determination of these values requires the division of the
sample data into three parts: i) a training set, ii) a validation set, and iii) a
testing set. First, we estimated the model using the training set (in-sample),
which comprises the first set of hyperparameters. Then, the cross-validation
method is used to calculate the best hyperparameters with the validation
set. This process involves training and five-fold validation of the ML model
in which every partition or fold is used as the validation set and the others
as the training set on each iteration. Hence, we obtained five performance
metrics, one for each fold, which we then averaged. Moreover, to identify the
optimal hyperparameters we ran the cross-validation Bayesian optimization
algorithm, closely following Snoek et al. (2012).
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Table 1
Estimation testing strategy
Training dataset Validation set Testing set
2008m01-2014m08 2014m09-2022m05 2022m06-2023m05
> > >

Fold 1 Fold2 Fold3 Fold4 Fold5

Source: Compiled by authors.

We then used cross-validation techniques to carry out the search process
for the optimal values that minimize the mean quadratic error of projections
(MSE?). The cross-validation entailed forecasting the growth (y,,,) with the
available data at time t(y,4;|I,)’, with the hyperparameters obtained for each
fold.* Once we identified the optimal values, we assessed the accuracy of
the model in the testing set (out-sample) by evaluating the MSE between
the projection growth with the available data available at time t(y,,;|I;) and
the available data at time ¢ + h(y,y;|1,). We repeated these steps to attain
the minimization of the MSE value as shown in Figures 6 to 9 for each
type of ML model.’

To prevent overfitting in the ML models, we bounded the hyperpara-
meters within ranges recommended in the literature reviewed. (See Zou
& Hastie, 2005.) This approach contributed significantly to the model’s
ability to make robust predictions, allowing for more effective exploration
in estimating monthly GDP rate growth without the risk of overfitting.

6 Indicator that measures the average of the squared errors between the predictions of a model and
the real values, without applying the square root, used for validation of parameters in ML models.

7 s the available information set where we obtained the full available data of 91 predictors varia-
bles.

8  The / can be interpreted as the horizon to forecast, which in a nowcasting context s usually 4 = 1.

9 In case of partial availability of the information set or of the data pertaining to the 91 predictor
variables, estimation could be performed using other techniques such as DFM with the modified
EM algorithm of Bénbura and Modugno (2014), which also accounts for missing data in the EM
iterations.
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Table 2
Priors and hyperparameter ranges
Model Hyperparameter Range Optimised Value
Lasso Lambda 0.001 to 0.009 0.007
Ridge Lambda 0.01 t0 0.09 0.310
. Alpha 0.1 0.9 0.500
Elastic Net Lambda 0.01 t0 0.09 0.040
Adaptive Lasso Lambda 0.01 t0 0.09 0.670
Omega 0.1t00.9 0.340
Random Forest #Tress 1 t0 400 281
Gradient Boosting .#Tress4 1 t0 5000 19 .
Machi Distribution Normal Bernoulli
achine Shrinkage 0.001 to 0.009 0.300

Source: Compiled by authors.

4.2 Model comparison

Table 3 presents a comparison of the prediction performance of the ML and
benchmark models for the validation and test set, from September 2014 to
May 2023. As to the forecast evaluation using the RMSE, the ML models
succeeded in significantly minimizing the projection error in comparison
with the benchmark AR model and the three different specifications of
dynamic factor models."” Every projection model compared the forecast
with the full available data set at time t + h with the actual GDP rate growth
t + h. The models that stand out over the others were the gradient boosting
machine, LASSO and elastic net , each of which reduced the forecast error
by around 20% to 25%.

We also estimated the Diebold—Mariano statistic, which is used to com-
pare the accuracy of two forecast models. According to this statistic,'" most
of the ML models are statistically significant, in line with previous research
(Richardson & Mulder, 2018; Varian, 2014; Zhang et al., 2023); most
showed p-values below 0.05, suggesting that their forecasts are significantly
different from the actual GDP values. This indicates that the predictions for
these models are statistically distinguishable from the real outcomes. Adaptive
LASSO (p=0.126) and random forest (p=0.089) presented higher p-values,
indicating that their forecasts are not significantly different from the actual
GDP values at the conventional significance levels. This could suggest these
models provide more accurate predictions of the real GDP outcomes.

10 Bdnbura & Modugno (2014).
11 Diebold & Mariano (1995).
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On the other hand, it is important to highlight that the real-time forecasts
presented in this paper successfully anticipated the economic contraction
in the Peruvian context associated with by the COVID-19 pandemic in
March 2020, and also accurately captured the subsequent economic reco-
very period in March of the following year. This illustrates the usefulness
and effectiveness of using penalty models and/or decision trees to forecast
high-frequency economic variables.

Table 3

Evaluation of model and benchmark forecasts
2014m09-2023m05

RMSE

Model MAE RMSE (Rel. to AR)' p-value (DM)

Lasso 0,29 0,26 0,10 0,014
Ridge 0,38 0,34 0,13 0,043
Elastic Net 0,33 0,28 0,11 0,039
Adaptive Lasso 0,51 0,68 0,27 0,126
Random Forest 0,4 0,45 0,18 0,089
Gradient Boosting Machine 0,11 0,17 0,07 0,016
Stepwise? 1,66 1,63 0,59 0,001
DFM full® 0,67 0,93 0,36 0,005
DFM best* 0,55 0,72 0,28 0,004
DFM structured® 0,86 1,05 0,41 0,003
Autoregressive model (AR) 2,14 2,55 0,00

1/ RMSE(Model),/RMSE(AR). 2/ Uses variables within unstructured data and structured selected by
iteratively adding or removing variables based on statistical criteria. 3/ DFM full uses the 91 variables
within unstructured as well as structured data. 4/ DFM best uses variables within unstructured data
and structured selected by the Gibbs sampling as best estimators to predict GDP. 5/ DFM structured
uses only 56 structured variables.

Source: compiled by authors.
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Figure 3
Machine learning model projection and GDP
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4.3 Consistency

To test the consistency of the results and determine whether the ML model
projections contribute positively to the accuracy of predictions of monthly
GDP versus the benchmark models, we used the Romer and Romer (2008)
approach, except we replaced an official’s prediction with a DFM estimation
that incorporates electricity production as the main leading indicator—a
popular approach among economic studies departments in Peru. We esti-
mated the following regression model:

Ye=BDFME, + B,ML; + e, (14)

Where y, represents the real monthly GDP growth, DFME, is the dynamic
factor model estimated using electricity production, and ML, is the out-sample
prediction for each machine learning model. The results obtained indicate
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that all the projections of machine learning contribute significantly to the
GDP projection, with the best model being the gradient boosting machine in
line with the Akaike criterion. Likewise, analyzing the estimation errors of the
models generated by equation (14), we applied the test proposed by Harvey et
al. (1997) with the long-run variance autocorrelation estimator proposed by
Diebold and Mariano (1995) to evaluate the accuracy gains in the estimates
from the results of the ML models. The p-value is shown in the last column
of Table 4, where the alternative hypothesis is that the models in equation
(14), which include the ML model projection, are more accurate than the
predictions under the dynamic factor model alone. These values indicate the
superior accuracy of the models that incorporate ML at a 10% confidence
level in the case of the LASSO and ridge models, but at 5% in the others.

Table 4

B4 value and validation criteria

Model Estimated value AIC pvalue  p-value (DM)
Lasso 0,714 520,32 0,00 0,079
Ridge 0,936 554,73 0,00 0,057
Elastic Net 0,839 549,80 0,00 0,055
Adaptive Lasso 0,703 517,49 0,00 0,046
Random Forest 0,783 534,20 0,00 0,049
Gradient Boosting Machine 0,810 492,09 0,00 0,041

Source: Compiled by authors.

5. Conclusions

In this study we evaluated the prediction accuracy of the most popular
ML algorithms to nowcast—tracking in real time—the monthly growth
rate of Peruvian GDP. The analysis window was between 2008 and 2023
and worked with several leading indicators to assess the dynamic of GDP
components measured by way of the expenditure and productive sector
approach. Furthermore, we enriched our approach by incorporating a sen-
timent data index built through Google Trends, which have proven effective
in estimating advanced economic activity. The ML approach allowed the use
of 91 variables simultaneously, incorporating structured data non-structured
data, including a larger dataset for the Peruvian GDP prediction case. The
evaluation results and consistency exercise provide evidence that the positive
contribution of ML models and sentiment data significantly improve the
model accuracy and allow the early detection of periods of high volatility—
an aspect that conventional models often fail to capture.
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Our results shed light on how ML can outperform AR, stepwise and
DFM models in prediction accuracy, which opens up a new agenda for
emerging economies to improve the forecasting of relevant macroeconomic
variables such as consumption, employment, and investment, among others.

These models have been implemented by the Department of Macro-
economic Projections in the Ministry of Economics and Finance of Peru,
perform successfully, and are incorporated into monthly activities; therefore,
we would like to suggest three specific outstanding agendas based on our
application expertise. First, there is a need to analyze the marginal prediction
gains from the inclusion of unstructured data in reducing forecast error, since
our results have shown improvements in accuracy. However, a key question
arises: Would the period analyzed influence the results? Between 2004 and
2023, which includes high volatility events such as the pandemic, the global
financial crisis, and climate shocks in 2017 and 2023, ML models with
unstructured data gained in predictive capacity by track daily frequency data
from Google Trend searches. This question could be tested by performing
a variance analysis of the projection errors by comparing ML models with
other more traditional ones during a period of relative normality and other
periods of crisis. Second, in the estimates we observed the unsynchronized
availability of approximately 45% of the dataset variables (91), which raises
the question of whether consistent results would be equally obtained with a
smaller number of variables. This proportion could be evaluated in subse-
quent studies by reducing the software requirements. Third, the treatment
of the unstructured data could be improved; in this study we used a simple
and didactic management of non-structured data, but monthly weighting
of searched words in Google Trends could be considered to smooth the high
variability related to this type of data.
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6. Appendix

Table 5
Literature on Nowcasting
Author Year Methodology Country
Literature International
Banbura and others 2013 DFM Europe
Evans 2005 DFM us
Giannone and others 2008 DFM uUs
Nowcasting with machine learning
Richardson and others 2018 Various models ML New Zealand
Giannone and others 2008 DFM us
Ghosh and Ranjan 2023 Various ML India
Muchisha and others 2020 Various ML vs DFM Indonesia
Zhang, Ni and Xu 2023 Various ML China
Kant and others 2022 Various ML Netherlands
Suphaphiphat and others 2022 Various ML Europe
Nowecasting with big data
Blei, Ng and Jordan 2003 LDA Us
Athey, Mobius and Pal 2017 Google News Spain
Woloszko 2020 Google Trends USA
Niesert and otros 2020 Google Trends Advanced Economies
Peruvian main references
Escobal and Torres 2002 DFM Peru
Pérez Forero 2016 DFM Peru
Kapsoli and Bencich 2002 Neuronal Networks Peru
Pérez Forero 2018 Bayesian VAR Peru
Etter and Graff 2011 Surveys Peru
Martinez and Quineche 2014 Neuronal Networks Peru

Source: Own elaboration.
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Table 6

List of no structured variables included in the model

Unstructured variable details

Units of Measure Frequency Source
Search Index (0 to 100) Daily Google Trends
Variables

1.- Searched Words on Economic

Inflation Recession

2.- Searched Words on Consumption

Kia Toyota Movies
Restaurants Credits Loans
Mortgages Deals

3.- Searched Words on Labor Market

Employment Unemployment Labor

4.- Searched Words on Sectorial Industry

Mining Investment

5.- Searched Words on Current Situation

Peruvian Crisis Bankruptcy Economy
Economic Crisis
6.- Searched Words on Real Estate Market
Land Real Estate
7.- Searched Words on Politics

Elections
8.- Searched Words on Tourism
Travel Machu Picchu Flights
Visa Flights to the US Accommodations
Hotels Vacations

9.- Searched Words on Bonds and Pensions

Bonds CTS AFP
10.- Searched Words on Weather and Natural Phenomena

Rains ENSO Droughts

Frosts Huaico

Source: compiled by authors.
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Table 7
List of structured variables included in the model (a)
No. Variable Units of Measure ~ Frequency Source
Main Indicator
1 GDP Index 2007 = 100 Monthly INEI
Consumption Indicators
2 Credit S/ Millions Monthly BCRP
3 Credit US$ Millions Monthly BCRP
4 Credit (constant exchange rate) S/ Millions Monthly BCRP
5  Consumer credits S/ Millions Monthly BCRP
6 Mortgage Loans S/ Millions Monthly BCRP
7 Deposits S/ Millions Monthly BCRP
8  Deposits S/ Millions Monthly BCRP
9 Sales of chickens Metric Tons Dayly MIDAGRI
10  Consumer Confidence Index Points Monthly  Apoyo Consultoria
Activity Indicators
11 Electricity Production Monthly INEI
12 Hydrocarbon Production Dayly MINEM
13 3-Month Economic Expectations Points Monthly BCRP
14 Oil B/D Dayly MINEM
15  Natural Gas MCF Dayly MINEM
Investment Indicators
16  Domestic Cement Consumption Index Weekly INEI
17 Import of Intermediate Inputs Index Weekly INEI
18  Import of Capital Goods Index Weekly INEI
Labor Market Indicators
19  Employed Labor Force Thousands Monthly INEI
20  Properly Employed Population' Thousands Monthly INEI
Public Investment Indicators
21  Non-Financial Gov. Expenditures S/ Millions Monthly BCRP
22 IAFO Index Monthly INEI
Foreign Trade Indicators
23 Volume of Imported Inputs Index Monthly INEI
24 Terms of Trade Index Monthly BCRP
25 IPX Index Monthly BCRP
26 IPM Index Monthly BCRP
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Financial Indicators

27  General Stock Market Index” Percentages Dayly Bloomberg

28  Liquidity Millions of Soles  Monthly BCRP
Monetary Indicators

29 CPI Index Monthly INEI

30 Non Food and Energy Price Index Index Monthly BCRP

31 Wholsale Price Index Index Monthly BCRP

32 Core CPI Index Monthly BCRP

1/ Metropolitan Lima. 2/ Lima
Source: compiled by authors.
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Table 8
List of structured variables included in the model (b)
No. Variable Units of Measure  Frequency Source
International Indicators

33 Multilateral Real Exchange Rate (2009=100) Monthly BCRP

34 EMBIG Perd Pbs Dayly BCRP

35 Oil WTI Dollars per Barrel Dayly Bloomberg
36 USIPC Index Monthly FRED

37  Industrial Production Index YoY Quarterly Bloomberg
38 Copper cUS$/Ib. Dayly Bloomberg
39  Gold US$/oz. tr. Dayly Bloomberg
40  US Manufacturing PMI Points Monthly Bloomberg
41 FED Interest Rate (Upper Limit) Percentages Monthly Bloomberg
42 VIX Index Percentages Dayly Bloomberg
43 Spread 2Y-5Y Monthly Bloomberg
44 China Industrial Production YoY Monthly Bloomberg
45  PPI by All Commodities (1982=100) Monthly FRED

Climate Indicators
46 ATSM Degrees Celsius ~ Monthly IMARPE
Fischry Indicators

47 Anchoveta Landing Metric Tons Dayly IMARPE

48  Logarithm of Anchoveta Landing Dayly Own claboration
49  Anchoveta Landing' Dayly Own elaboration
50  Variation Anchoveta Landing Dayly Own elaboration

Agricultural Indicators

51 Paddy Rice production Tons Monthly MIDAGRI
52 Potato production Tons Monthly MIDAGRI
53  Onion production Tons Monthly MIDAGRI
54  Tomato production Tons Monthly MIDAGRI

1/ Seasonally Adjusted. 2/ Seasonally Adjusted.
Source: compiled by authors.
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Figure 4
Gibb sampling (2004-2023) - probability of inclusion in optimal model
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Figure 5
Gibb sampling (2004-2019) - probability of inclusion in optimal model
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Figure 6
LASSO Optimal Parameters

(a) Coef. () by hyperparameter range (b) Optimal hyperparameter vs. MSE
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Figure 7

Ridge Optimal Parameters
(a) Coef. (e) by hyperparameter range (b) Optimal hyperparameter vs. MSE
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Figure 8
Elastic Net Optimal Parameters

(a) Coef. () by hyperparameter range (b) Optimal hyperparameter vs. MSE
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Figure 9

Adaptive LASSO Optimal Parameters
(a) Coef. (e) by hyperparameter range (b) Optimal hyperparameter vs. MSE
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Figure 10
Dynamic correlations of the structured variables
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34 Anchovy Landing

35 Tomato production

36 Logarithm of Anchoveta Landing
37 Terms of trade

38 Rice

39  Fed rate

40  Onion production

41 Oil production

42 Chicken price

43 Potato production
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46 Consumption expectations

47 Underlying CPI

48 Multilateral real exchange rate
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Source: compiled by authors.
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Figure 11
Correlations of the main nonstructured variables
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