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Abstract. Nowcasting models based on machine learning (ML) algorithms 
deliver a noteworthy advantage for decision-making in the public and private 
sectors due to their flexibility and ability to handle large amounts of data. 
This article introduces real-time forecasting models for the monthly Peruvian 
GDP growth rate. These models merge structured macroeconomic indicators 
with high-frequency unstructured sentiment variables. The analysis spans 
January 2007 to May 2023, encompassing a set of 91 leading economic 
indicators. Six ML algorithms were evaluated to identify the most effective 
predictors for each model. The findings underscore the remarkable capability 
of ML models to yield more precise and foresighted predictions compared 
to conventional time series models. Notably, the gradient boosting machine, 
LASSO, and elastic net models emerged as standout performers, achieving a 
reduction in prediction errors of 20% to 25% compared to autoregression 
and various specifications of dynamic factor model. These results could be 
influenced by the analysis period, which includes crisis events featuring high 
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uncertainty, where ML models with unstructured data improve significance.
Clasification JEL: C32, C53, E37, C52, E32.

Key Words: nowcasting, machine learning, GDP growth.
Resumen. Los modelos de nowcasting basados en algoritmos de Machine 
Learning (ML) ofrecen una ventaja notable para la toma de decisiones en 
los sectores público y privado debido a su flexibilidad y capacidad para 
manejar grandes cantidades de datos. Este documento presenta modelos 
de pronóstico en tiempo real para la tasa de crecimiento mensual del PIB 
peruano. Estos modelos combinan indicadores macroeconómicos estructu-
rados con variables de sentimiento no estructurados de alta frecuencia. El 
análisis comprende desde enero de 2007 hasta mayo de 2023, abarcando un 
conjunto de 91 indicadores económicos principales. Se evaluaron seis algo-
ritmos de ML para identificar los predictores más eficaces de cada modelo. 
Los resultados subrayan la notable capacidad de los modelos de ML para 
producir predicciones más precisas y previsoras que los modelos conven-
cionales de series temporales. En particular, Gradient Boosting Machine, 
LASSO y Elastic Net destacaron por sus resultados, logrando una reducción 
de los errores de predicción de entre el 20% y el 25% en comparación con 
los modelos AR y varias especificaciones de DFM. Estos resultados podrían 
estar influenciados por el periodo de análisis, que incluye acontecimientos 
de crisis con un alto grado de incertidumbre, en los que los modelos ML 
con datos no estructurados mejoran la significación.

Clasificación JEL: C32, C53, E37, C52, E32.
Palabras clave: nowcasting, machine learning, crecimiento del PBI.
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1.	 Introduction

Real-time decision-making is a significant challenge for policymakers who 
often face delays in obtaining updated information about macroeconomic 
indicators. In most cases, the economic variables present a delay of 30–45 
days on average, including the time for revisions and retrospectives. Never-
theless, the continuous strides toward the new generation of high-frequency 
data have changed how prediction models address the inherent uncertainty 
in this information. As a result, in the past few years, central banks and inter-
national institutions have adopted methodological focuses that incorporate 
machine learning and take advantage of the abundant quantities of data 
that come from search engines and social media, as shown in Araujo et al. 
(2023); Chakraborty and Joseph (2017); Richardson and Mulder (2018).

These automated learning techniques have gained greatly in popularity 
compared to the conventional focus of traditional time series models to 
project macroeconomic variables. An often highlighted characteristic of 
these algorithms is their capacity to formulate parametric selections in 
large amounts of data sets, based on training a specific percentage of the 
model’s information. The objective of this paper is to explore the benefits of 
utilizing several machine learning methodologies. We do so by combining 
the use of conventional leading indicators (structured data) and sentiment 
data indexes (non-structured or unstructured data) to forecast in real-time 
(nowcast) Peru’s monthly real GDP growth rate. 

The data set consists of both local and international variables, which can 
be broken down into 53 structured variables and 38 nonstructured variables, 
giving a total of 91 predictors. We examine these predictive variables based 
on the model, between September 2014 and May 2023, to evaluate the 
optimum performance of each. Furthermore, following Romer and Romer 
(2008) we performed a predictive accuracy analysis using two models as 
reference, the traditional autoregressive time series and a dynamic factor 
model, based on the leading indicator of electricity production used in the 
economic literature and by Peruvian political and economic consulting firms. 
This facilitates an exhaustive evaluation of the performance of machine 
learning algorithms.

The results show that the immediate predictions of machine learning 
models are more robust than the benchmark auto-regressive model and 
perform better than dynamic factor model (DFM). Specifically, the random 
forest, gradient boosting machine, and adaptive LASSO models demonstrate a 
superior ability to reduce the average projection error in a range of 20-25%. 
In addition, following the methodology proposed by Armstrong (2001), we 
corroborate that using the average projection value all the machine learning 
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algorithms adds significant value to the root mean square error (RMSE), 
which contributes positively to a more precise prediction of GDP. Even 
though other models—ridge, the least absolute shrinkage and selection 
operator (LASSO), and elastic vet—do not reach the same level of predictive 
ability as the aforementioned machine learning (ML) methodologies, they 
still outperform the control model.

Further, the proof of forecasting evaluation and consistency assessment 
confirms that most of the machine learning models improve the predic-
tion significantly, in line with previous literature applied in other contexts 
(Richardson & Mulder, 2018; Varian, 2014; Zhang et al., 2023).

This article contributes to the literature that highlights the success of 
machine learning applications in contrast to more traditional methodo-
logies.2 However, given the lack of evidence in Latin America,3 and in 
particular Peru,4 regarding the use of these algorithms in conjunction with 
non-structured data, this research project also highlights the need fore-
ground a discussion about what these models entail. Barrios et al. (2021), 
Richardson and Mulder (2018), and Döpke et al. (2017) have shown 
through the implementation of diverse machine learning algorithms that 
the results of these methods are better suited to carrying out forecasts in 
real-time when a large amount of information is available to the forecaster. 
For example, Longo et al. (2022) carried out a forecast of quarterly GDP in 
the US for the combination of a neuronal recurrent network and a dynamic 
factor model with a temporal variation of the median. This combination of 
models demonstrated a substantial decrease in the forecast error, as well as a 
capability to capture the period of recession associated with the COVID-19 
pandemic and the subsequent economic recovery. Similarly, in the case of 
El Salvador and Belize, Barrios et al. (2021) implemented a large array of 
machine learning methods and predictive variables to forecast the quarterly 
growth of GDP. The results concluded that the application of these tools 
represents a robust alternative to prediction, and its benefits led the authors 
to recommend their use in other countries in the region. Other researchers 
have extended the application of machine learning models beyond GDP 
to the likes of forecasting, inflation, yield curve, and active prices. These 
efforts have yielded notable results in precise forecasting (Giglio et al., 2022; 
Medeiros et al., 2021). 

2	 It is important to mention the pre-publication of our paper, Tenorio & Perez (2023), by the Cen-
tral Bank of Peru and the Peruvian Economics Association as well as at meetings of economists 
organized by the Central Bank of Peru, where we received valuable feedback from other experts.

3	 See Barrios et al. (2021).
4	 See Escobal D’Angelo and Torres (2002); Perez Forero (2018).
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It is still important to highlight that the implementation of these methods 
still presents challenges, sparking major debates. For instance, Green and 
Armstrong (2015) and Makridakis et al. (2018), when comparing multiple 
models of machine learning, found that the results of the forecasting were 
less significant in comparison with statistical smoothing approaches and 
ARIMA models. These authors warned that the computational complexity 
inherent to variable selection and use in the machine learning model makes 
immediate forecasting difficult and less practical for policymakers. 

The remainder of this article is structured as follows. The next section 
presents a literature review that explores the relevance of the nowcasting 
methodology in the context of machine learning and big data, both at the 
national and international levels. Thereafter, a section is devoted to the 
methodology, models, and data sets used. The results are then displayed 
in a specific section, followed by the robustness tests and the conclusion.

2.	 Literature review

Economists aim to provide the most accurate GDP forecasts using the most 
efficient approaches. Stock and Watson (1989) were the first to propose an 
economic cycle index using factor models. However, a critical challenge is 
the increase in uncertainty in the estimates, an area in which traditional 
models, which use a limited set of variables, often fall short. The literature 
has therefore been exploring new models using machine learning techniques 
to balance the trade-off between bias and variance.

Nowcasting methods seeks to address the issue of extended delays in 
the publication of key economic aggregates, as well as aims to predict the 
present, the very near future, and the very recent past (Bánbura et al., 2013). 
A traditional reference nowcasting model is the DFM, widely used in central 
banks to predict GDP (Bánbura & Rünstler, 2011; Bok et al., 2018; Gian-
none et al., 2008; González-Astudillo & Baquero, 2019; Rusnák, 2016). 
Two seminal studies have formalized this process into statistical models. On 
one hand, Giannone et al. (2008) proposed a methodology to assess the 
marginal impact of the publication of monthly-updated data on forecasts of 
quarterly-published real GDP growth. The authors proposed a method to 
track the real-time flow of information that central banks monitor through 
large datasets with staggered publication dates. The proposed method works 
by updating primary forecasts (forecasts for the current quarter) each time 
new higher-frequency data is published. This is done using progressively 
larger datasets that reflect the unsynchronized data publication dates. 
On the other hand, Evans (2005) performed real-time estimations of the 
current state of the US economy using an approach that included data 
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complexity and provided useful information about the relationship between 
macroeconomics and asset prices. The author modeled monthly time series 
using a DFM in a state-space system. Once the state-space representation 
was settled, Kalman filter techniques were estimated for GDP forecasting, 
as they automatically adapt to changes according to the data available. In 
the present study, we followed the proposals of Evans (2005) to perform 
our DFM specifications in addition to the implementation suggestions of 
Doz et al. (2012).

An additional advantage of nowcasting models is the constant impro-
vement in wider information availability and data frequency heterogeneity 
(González-Astudillo & Baquero, 2019; Zhang et al., 2023). Thus, ML 
methods are now being incorporated to enhance the nowcasting approach. 
ML algorithms deliver better performance in handling large amounts of 
data, capturing non-linear relationships, and adapting to changing econo-
mic conditions.

ML methods provide more accurate predictions by incorporating various 
variables and sources of unstructured data. As noted by Athey (2018), these 
techniques can be divided into two main categories: unsupervised and 
supervised ML. The former seek groups of observations that are similar 
in terms of their covariance. Thus, a “dimensionality reduction” can be 
performed. Unsupervised MLs commonly use videos, images, and text 
as sources of information, in techniques such as K-means clustering. For 
instance, Blei et al. (2003) applied pooling models to find topics in textual 
data. In turn, Woloszko (2020) presented a weekly indicator of economic 
activity for 46 OCDE countries and the G20 using search data from Google 
Trends. The author illustrated the power of prediction of specific topics, 
including “bankruptcies,” “economic crises,” “investment,” “baggage,” and 
“mortgages.” Calibration was performed using a neural network that captu-
red nonlinear patterns, which were shown to be consistent with economic 
intuition using ML Shapley values interpretation tools. 

On the other hand, supervised ML algorithms entail the use of a group of 
variables or features to predict a specific indicator result (Varian, 2014). The 
variety of supervised ML regression methods in circulation include LASSO, 
ridge, elastic net, random forest, regression trees, support vector machines, neural 
nets, matrix factorization, and model averaging, among others.

Several studies highlight the advantages of supervised ML models 
over traditional methods in forecasting macroeconomic series. Ghosh 
and Ranjan (2023) presented a compilation of ML techniques and con-
ventional time series methods to predict the Indian GDP, estimating ML 
in the DFM context with financial and economic uncertainty data. They 
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employed random forest and prophet models along with conventional time 
series models such as ARIMA to nowcast Indian GDP, finding that hybrid 
models stand out. Similarly, Richardson and Mulder (2018) detected that 
a ridge regression model outperformed a DFM for a GDP nowcast GDP of 
New Zealand. Muchisha et al. (2021) built and compared ML models to 
forecast the GDP of Indonesia. They evaluated six ML algorithms, random 
forest, LASSO, ridge, elastic net, neural networks, and support vector machines, 
using 18 variables between 3Q2013 and 4Q2019. Their results illustrate the 
outstanding performance of ML versus auto-regressive models, especially 
the random forest model. 

For their part, Zhang et al. (2023) tested ML, DFM, and static factor 
and MIDAS regression models to nowcast the GDP rate growth of China, 
observing the superior accuracy of ML compared to DFM. Ridge regression 
surpassed all other ML models in prediction and early anticipation of cri-
ses such as the global financial crisis and COVID-19. Kant et al. (2022) 
compared models applied to the Dutch economy between 1992 and 2018, 
with random forest algorithms standing out. Using novel variables such as 
Google Search and air quality, Suphaphiphat et al. (2022) ran standard 
DFM and ML on European economies during normal times and crises. 
They showed that most MLs significantly outperformed the AR (1) reference 
model; DFM tended to perform better in normal times, while many of the 
ML methods excelled in identifying turning points. Moreover, ML proved 
able to predict adequately in very disparate economies. Meanwhile, Barrios 
et al. (2021) assessed adjusted ML models on the Belizian and Salvadoran 
economies and found that they delivered robust predictions, adding to the 
evidence that ML algorithms are effective in very different country contexts.

Another relevant consideration is Big Data due to its benefits in broade-
ning the range and use of available data to provide valid information on the 
behavior of the economy and anticipate certain economic indicators (Einav 
& Levin, 2014). As mentioned in Eberendu et al. (2016), the digital era 
has seen the emergence of digital news platforms, social media technolo-
gies, smartphones, and online advertising. Nevertheless, many of the new 
data types—text, XML, email, images, videos, and so on—lack a pre-fixed 
format, raising new challenges and attracting new research. Eberendu et al. 
(2016) proposed a general description of this type of data. Some studies show 
relevant results on the use of these techniques. For instance, Varian (2014) 
proposed that a search for “initial claims for unemployment” in Google 
Trends offered good basis on which to forecast unemployment, CPI, and 
consumer confidence in countries such as the US, UK, Canada, Germany, 
and Japan. The author focused on immediate out-of-sample forecasting and 
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extended the Bayesian structural time series model using the Hamiltonian 
sampler for variable selection, obtaining good results for unemployment 
but less so for CPI or consumer confidence.

In the Latin America context, Barrios et al. (2021), Richardson and 
Mulder (2018), and Döpke et al. (2017) have shown through the imple-
mentation of diverse ML algorithms that the results are more promising 
for carrying out forecasts in real-time when a large amount of information 
is at the researchers’ disposal. Caruso (2018) noted the benefits of using 
external indicators in short-term GDP forecasting in Mexico, assessing a 
DFM model that deals with the mixed frequency of macroeconomic indi-
cators. Gálvez-Soriano (2020) showed that the bridge equation model did 
better than DFM and principal components analysis in predicting monthly 
Mexican GDP. Corona et al. (2022) illustrated the gains on DFM models 
of including nontraditional variables such as Google Trends with regard to 
the Mexican Global Economic Activity Indicator (IGAE). Bolivar (2024) 
nowcasted monthly economic growth by using machine learning algorithms 
and integrating data from both traditional and remote-sensing sources, 
for the case of Bolivia. The results indicated that these tools (ML and Big 
Data) represented a solid alternative to prediction, and their benefits lend to 
usage in other countries in the region. Other researchers have extended the 
application of ML models to GDP, inflation, yield curve, and active prices. 
These efforts have yielded notable results in precise forecasting (Giglio et 
al., 2022; Medeiros et al., 2021).

In the case of the Peruvian economy, previous works have focused on the 
anticipated estimation of monthly GDP growth based on a set of leading 
indicators (structured data). However, the limited application of machine 
learning models and the inclusion of unstructured data in GDP forecasting 
is evident. For instance, Escobal D’Angelo and Torres (2002) built a joint 
leading indicator that allows the tracking of Peruvian GDP with only 14 
variables. Kapsoli Salinas and Bencich Aguilar (2002) performed a forward 
GDP estimation with a nonlinear neural network model. In turn, Etter 
et al. (2011) proposed a leading indicator using an expectations survey 
conducted by the Central Bank of Peru (BCRP). Martınez and Quineche 
(2014) forecast the GDP growth rate based only on the electricity pro-
duction indicator. Following Aruoba et al. ( 2009), Forero et al. (2016) 
proposed a leading indicator of Peruvian economic activity, obtained as a 
common unobservable component that explains the co-movement among 
six variables: electricity production, domestic cement consumption, adjusted 
domestic sales tax, chicken sales, metal mining production, and real GDP. 
Finally, Pérez Forero (2018) attempted to solve the difficulties about best 
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leading indicators selection under the approach of Varian (2014). Perez 
Forero estimated a steady state system through the Bayesian Gibbs-Sampling 
methods and a spike-and-slab to perform stochastic search variable selection 
(SSVS), calculating the probability of inclusion of a large set of variables in 
the best model to predict GDP. 

Finally, the studies applied to Peru and focused on implementing 
machine learning techniques include those by Tenorio and Perez (2024) 
and Tenorio and Perez (2023), which are working papers that were updated 
and reviewed. These pre-publications have provided valuable feedback and 
insights from experts on the subject, allowing us to refine our contribution.

3.	 Methodology

This section briefly describes the different regularization methods and 
decision trees used to select the best predictors for the monthly nowcasting 
model and calibrate the hyperparameters, in a series from January 2007 to 
May 2023. The six methods that are used are random forest (RF), gradient 
boosting machine (GBM), LASSO regression, ridge, elastic net, and, as a 
benchmark, an autoregressive (AR) and dynamic factor model (DFM).

3.1	 Autoregressive model (AR)
As a starting point, we established an autoregressive AR model for monthly 
GDP growth (yt), which reflects the value of a variable in terms of its pre-
vious values. A model of order 1, following these characteristics, exhibits 
the following structure:

	 y = β0 + β1 yt–1 + et	 (1)

et ~ Ν(0,σ2)

where β0 is a constant term, β1 is a parameter, and et is a term that follows 
a normal distribution with a mean of zero and a constant variance σ2 and 
captures the randomness of the model.

3.2	 Stepwise least squares
Stepwise regression is a method that sequentially fits a model by adding or 
removing variables iteratively based on different statistical criteria, with the 
aim of minimizing the mean squared error. This model combines simplicity 
and robustness with which to improve the model’s projection capability. 
The variable selection process can be carried out through either forward 
selection, backward selection, or a combination of both known as bidirec-
tional stepwise regression. This study aims to find the best choice within 
the universe of 91 leading indicators.
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3.3	 Dynamic factor model (DFM)
DFMs are estimated in the form of state-space systems using the Kalman 
filter and various types of algorithms. Following the proposal by Doz et al. 
(2011), one of the most popular in the economic literature is the expectation 
maximization algorithm due to its robust numerical properties, which make 
it an efficient estimator for bigger datasets. 

The canonical reference DFM can be described as follows:

	 xt = Bft + et       et ∽ N(0, R)	 (2)

	 ft = ∑pj = 1 Aj ft–j + ut       ut ∽ N(0, D)	 (3)

Where equation (2) is identified as the measurement equation, and 
equation (3) as the transition equation, allowing the unobservable factor 
ft to evolve as in a vector autoregressive model. These equations do not 
include trends or intercepts, as the included data must be stationary and 
standardized before estimation.

The matrix system is as follows:
xt: a vector of n x 1 observable time series at time t: (xt, ..., xnt)′, which 

allows for missing data.
ft: a vector of r x 1 factors at time t: (ft, ..., frt)′.
B: a matrix of n x r observable time series with lag j.
D: a matrix of r x r state covariances.
R: a matrix of r x r measurement covariances. This matrix is diagonal 

under the assumption that all covariances between the series are explained 
by the factors E [xit |x–i,t, ft]= bi ft,∀i, where bi is the i – th row of B.
This model can be estimated using a classical form of the Kalman filter and 
the maximum likelihood estimation algorithm, after transformation into a 
state–space model. In a VAR expression, it would be as follows:

	 xt = CFt + et       et ∽ N(0, R)	 (4)

	 Ft = AFt–1 + ut       et ∽ N(0, Q)	 (5)

As a benchmark model, we use the efficient estimation of a DFM via the 
EM algorithm on stationary and seasonally adjusted data with time-invariant 
system matrices and classical assumptions, while permitting missing data 
(Bánbura & Modugno, 2014).

3.4	 Penalized regression models
These methodologies are employed to optimize the selection of predictor 
variables and control the model complexity, which is crucial to preventing 
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overfitting in high-dimensional settings. The literature suggests different 
forms of penalization to estimate the parameters βj accurately. We will 
briefly explore the characteristics of the ridge, LASSO, elastic net, and adap-
tive LASSO models, emphasizing how these techniques allow for proper 
weighting of coefficients and how their application affects the inclusion and 
relevance of variables in the final model.

3.4.1	 Ridge regression 
The ridge model is defined by adding a penalty based on the sum of squa-
res of the coefficients of the predictor variables. This penalty compels the 
coefficients to be very small and prevents them from taking extremely high 
values, thus reducing the influence of less relevant variables. To estimate 
the coefficients β̂ 

Ridge, the equation must be expressed as:

	 minβ �
i = 1

n

� (yi – β0 – 
j = 1

p

�xijβj)² + λ
j = 1

p

�β²j �	 (6)

Where yi is the observed value of the dependent variable for observation 
i, xij is the value of predictor variable j in observation i, βj is the coefficient 
associated with predictor variable j, p is the number of predictor variables, 
and λ is the regularization hyperparameter that controls the magnitude of 
the penalty. The sum of the terms β²j in the penalty prevents the coefficients 
from reaching large values, thereby contributing to stability and reducing 
the risk of overfitting.

3.4.2	 LASSO regression 
The LASSO model, introduced by Tibshirani (1996), employs a penalty 
based on the sum of the absolute values of the coefficients of the predictor 
variables. This penalty forces some coefficients to reach exactly zero, automa-
tically selecting a subset of more relevant predictor variables and eliminating 
less significant ones. The LASSO coefficients β̂ 

Lasso are estimated as:

	 minβ �
i = 1

n

� (yi – β0 – 
j = 1

p

�xijβj)² + λ
j = 1

p

� |βj|�	 (7)

The change lies in the hyperparameter λ which, by summing the absolute 
values of the coefficients |βj| in the penalty, leads to model selection and 
simplification by allowing some coefficients to be zero. This provides a more 
precise variable selection approach regarding the degree of importance of 
all variables.
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3.4.3	 Elastic net regression
The elastic net model combines appropriately the constraints of both the 
LASSO and ridge models. Zou and Hastie (2005) noted that its advantage 
lies in correcting the model when the number of regressors exceeds the 
number of observations (p > n), which improves variable grouping. The 
penalty includes both the sum of the absolute coefficient values and the sum 
of squares of the predictor variable coefficients. The equation for estimating 
the coefficients β̂ 

Enet is expressed as:

	 minβ �
i = 1

n

� (yi – β0 – 
j = 1

p

�xijβj)² + λ
j = 1

p

�  (α |βj| + (1 – α)β²j )�	 (8)

where λ is the global regularization hyperparameter and α is the hyper-
parameter that controls the mix between LASSO (α = 1) and ridge (α = 0) 
penalties. The combination of both penalties in the elastic net model allows 
for a higher degree of flexibility in variable selection and coefficient alignment.

3.4.4	 Adaptive LASSO regression
Following Zou (2006) the adaptive LASSO model is a variant of the LASSO 
model that introduces a penalty approach to adaptively adjust the magnitude 
of the penalties for each coefficient of the predictor variables. This adapta-
tion allows for penalties to be different for different coefficients, potentially 
resulting in a more precise selection of relevant variables. Liu (2014) argued 
that this process can be efficiently performed using the LARS algorithm. 
The equation for the adaptive LASSO model (β̂ 

AdL) is expressed as:

	 minβ �
i = 1

n

� (yi – β0 – 
j = 1

p

�xijβj)² + λ
j = 1

p

�  wj|βj|�	 (9)

Where λ is the regularization hyperparameter, and wj is the adaptation 
factor for the coefficient βj. It is important to note that the exact form of 
the adaptation factors wj depends on the specific implementation and may 
vary. In general, these factors are calculated based on the absolute values of 
the coefficients in previous iterations of the algorithm.

3.5	 Decision tree models
Decision Tree models are machine learning algorithms that represent decisions 
and actions in the form of a tree. In the present case, we will present two algo-
rithms where each internal node of the tree represents a feature or attribute, 
and each branch represents a decision or rule based on that attribute. The 
training data is divided based on these decisions until it reaches leaf nodes, 
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which correspond to the predictions, in our case, related to monthly GDP 
growth. The use of these trees also allows for an improvement in variable 
selection by handling non-linear relationships in the model.

3.5.1	 Random forest
This method is based on constructing decision trees using variables from a 
matrix Χ and a random selection of features. In addition, it involves rando-
mly selecting subsets of data from Χ with replacement to train each tree in 
the ensemble, distinguishing it from other tree-based techniques. Each tree 
generates a prediction of the target variable (in this case, monthly GDP), 
and the final model selects the most voted prediction in the ensemble of 
trees (Breiman, 2001). According to Tiffin (2016) random forest has the 
advantage of combining predictions from multiple trees and selecting those 
with lower error, thereby reducing the influence of potential individual errors 
(if the correlation between trees is low). In sum, this method recursively 
divides the data in χi into optimized regions and uses variable-based criteria 
to forecast the target variable, then calculates the dependent variable as the 
average (avg) of these regions.

	 f(̂χ) = 
m

� ĉmI(χ ϵ Χr): ĉm = avg(yi |xi ϵ Χr)	 (10)

The algorithm has certain advantages, such as efficiency in handling large 
datasets with many variables, providing an estimation of variable impor-
tance, and offering an unbiased estimation of generalization error during 
its construction (Breiman, 2001). However, it also has disadvantages, such 
as difficulty in interpreting results beyond predictions and computationally 
intensive demand for training and hyperparameter tuning. Therefore, it was 
necessary to fine-tune this model through cross-validation, thus achieving 
better performance on unseen data.
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Figure 1 
Simple representation of the random forest algorithm
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Source: Compiled by authors.

3.5.2	 Gradient Boosting Machine
This algorithm builds a sequence of decision trees in which each tree is fitted 
to the residual errors of the previous tree. Therefore, each iteration obtains 
a new tree that minimizes the remaining error. These prediction models are 
trained using the errors from the accumulated set of weak predictions5 in 
a way that provides a progressive improvement in regression performance 
compared to the initial model (Natekin & Knoll, 2013).

In essence, each tree in this algorithm contributes its prediction, which 
is added to the sequence of predictions from previous trees to enhance the 
final prediction of the model. According to Boehmke and Greenwell (2020), 
this method can be summarized by the following equation:

	 F(χ) = 
z = 1

Z

� Fz(x)	 (11)

Where z is the number of trees that cumulatively sum the errors from 
all preceding trees. That is, if the first tree y = F1(x), then the second tree 
will be F2(x) = F2(x) + e1 and so on, successively, to minimize F(x) as the 
following expression:

5	 Brownlee (2016) indicated that weak models are not necessarily weaker than accurate models, as 
they have the advantage of being able to correct the overfitting problem.
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	 L = Min 
Z

� L(yz, Fz(x)	 (12)

Therefore, as new decision trees are incorporated, the accuracy of the 
final projection gradually, improves resulting in more precise forecasts for 
monthly GDP.

Figure 2 
Simple representation of the gradient boosting machine algorithm
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3.6	 Data
The model database comprises a variety of variables, ranging from macro-
economic and financial data to unstructured information related to senti-
ment or “trend” (See Tables 6, 7, and 8). This information set encompasses 
consumption indicators, such as credits, deposits, consumer surveys, and 
local activity indicators, including electricity production, hydrocarbons, 
economic expectations, and others. Investment indicators are also incorpora-
ted, including internal cement consumption, capital goods imports, and so 
forth. A set of monetary indicators covering consumer and producer price 
indices, among others, is included. It is important to highlight the inclusion 
of economic sector variables related to fishing and agricultural production, 
which constitutes a unique feature compared to other nowcasting models. 
Furthermore, the database covers information on foreign trade, the labor 
market, and climate data.

In addition to conventional variables, we have incorporated unstruc-
tured data related to perception in various areas, such as the economy, 
consumption, labor market, politics, tourism, government support, and 
natural phenomena. These variables can capture the general sentiment of the 
population and its potential influence on economic indicators. In particular, 
the use of vast search engines, such as Google, stands out as a powerful tool 
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for providing real-time information. Scott and Varian (2013) have pointed 
out that the inclusion of online searches as variables provides substantial 
benefits to short-term forecasting models, especially in detecting periods 
of high volatility. This is demonstrated in the ability to anticipate both the 
recession caused by the COVID-19 pandemic and the subsequent period 
of economic recovery. Consequently, the effectiveness of this approach has 
been widely investigated and adopted by central banks and international 
institutions. Thus, we estimated ten groups (See Table 6) of variables with 
the aim of tracking Google search queries, which are updated daily and 
can be downloaded from Google Trends. The selection of words (variables) 
was intended to convey different aspects of the economy; for instance, the 
consumption-related group is constructed based on searches for words like 
“Kia,” “restaurants,” “Toyota,” “credits,” “loans,” “deals,” “mortgages,” and 
“cinema.”

Once this textual data was converted into numerical data, we evaluated 
the inclusion of these series in the estimations of an optimal model using 
Gibbs sampling, following Garcia-Donato and Martinez-Beneito (2013). 
For this we used 50,000 iterations, an initial burning of 1,000 iterations, 
and constant beta priors (see Figure 10). This indicates the high relevance 
of the group of unstructured variables, such as the search frequency for 
the likes of “flights,” “peruflight us,” “visa,” or “El Niño”, which reflect the 
dynamics of tourism and climatic conditions, among others. Furthermore, 
we compared the results of this estimation with another by confining the 
sample to 2019 (see Figure 11); unstructured data becomes more impor-
tant when incorporating the pandemic period into the sample, which is 
in line with the findings of Richardson and Mulder (2018) and Woloszko 
(2020). Moreover, we performed a contemporaneous correlation analysis 
of these variables against monthly GDP, finding that more than half of the 
unstructured sample has a correlation greater than 30%.

The data frequency for constructing the model ranges from daily to 
monthly records. We assessed each variable in terms of its predictive abi-
lity regarding monthly GDP growth. Then, to facilitate comparison and 
analysis, we transformed these variables into annualized monthly percentage 
changes and standardized them. This standardization process allowed us to 
maintain a common reference framework and ensure that different variables 
contributed equitably to the model.

After obtaining a total set of 91 predictors spanning January 2008 to 
May 2023, we conducted the evaluation and selection of optimal predictors 
independently for each machine learning algorithm employed. We specify 
how we handled the data for the forecast update process in Section 4.1, and 
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how we tested the model accuracy comparison in Section 4.2. This approach 
enabled us to refine the process of choosing the most efficient prediction 
model, thereby achieving enhanced performance.

3.7	 Forecast evaluation strategy
To assess the accuracy in the projection of each model we used the root 
mean square error (RMSE), following the equation:

	 RMSE = � 1
T

t = 1

T

� (yt – ŷt)²	 (13)

Where yt represents the observed value of monthly GDP growth, ŷt is the 
forecasted value, and T is the total number of projections made. Following 
this initial assessment of prediction fit, we employed the method proposed 
by Diebold and Mariano (1995) to determine if the projections generated 
by each machine learning model significantly differed from the benchmark 
model.

4.	 Results

This section begins with a brief description of the database training period 
and hyperparameter optimization estimation, and finishes with a thorough 
analysis of the results.

4.1	 Estimation and hyperparameter calibration
To estimate machine learning models, the selection of hyperparameters plays 
a crucial role in terms of efficiency and accuracy. Furthermore, calibrating the 
hyperparameters of each model with a smoothing range provides flexibility, 
reduces noise, and enhances forecast stability and accuracy.

The optimal determination of these values requires the division of the 
sample data into three parts: i) a training set, ii) a validation set, and iii) a 
testing set. First, we estimated the model using the training set (in-sample), 
which comprises the first set of hyperparameters. Then, the cross-validation 
method is used to calculate the best hyperparameters with the validation 
set. This process involves training and five-fold validation of the ML model 
in which every partition or fold is used as the validation set and the others 
as the training set on each iteration. Hence, we obtained five performance 
metrics, one for each fold, which we then averaged. Moreover, to identify the 
optimal hyperparameters we ran the cross-validation Bayesian optimization 
algorithm, closely following Snoek et al. (2012).
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Table 1 
Estimation testing strategy

Training dataset
2008m01-2014m08

Validation set
2014m09-2022m05

Testing set
2022m06-2023m05

Fold 1   Fold 2   Fold 3   Fold 4   Fold 5

Source: Compiled by authors.

We then used cross-validation techniques to carry out the search process 
for the optimal values that minimize the mean quadratic error of projections 
(MSE6). The cross-validation entailed forecasting the growth (yt+h) with the 
available data at time t(yt+h|It)7, with the hyperparameters obtained for each 
fold.8 Once we identified the optimal values, we assessed the accuracy of 
the model in the testing set (out-sample) by evaluating the MSE between 
the projection growth with the available data available at time t(yt+h|It) and 
the available data at time t + h(yt+h|It). We repeated these steps to attain 
the minimization of the MSE value as shown in Figures 6 to 9 for each 
type of ML model.9

To prevent overfitting in the ML models, we bounded the hyperpara-
meters within ranges recommended in the literature reviewed. (See Zou 
& Hastie, 2005.) This approach contributed significantly to the model’s 
ability to make robust predictions, allowing for more effective exploration 
in estimating monthly GDP rate growth without the risk of overfitting.

6	 Indicator that measures the average of the squared errors between the predictions of a model and 
the real values, without applying the square root, used for validation of parameters in ML models.

7	 I is the available information set where we obtained the full available data of 91 predictors varia-
bles.

8	 The h can be interpreted as the horizon to forecast, which in a nowcasting context s usually h = 1.
9	 In case of partial availability of the information set or of the data pertaining to the 91 predictor 

variables, estimation could be performed using other techniques such as DFM with the modified 
EM algorithm of Bánbura and Modugno (2014), which also accounts for missing data in the EM 
iterations.
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Table 2 
Priors and hyperparameter ranges

Model Hyperparameter Range Optimised Value

Lasso Lambda 0.001 to 0.009 0.007

Ridge Lambda 0.01 to 0.09 0.310

Elastic Net Alpha 
Lambda

0.1 to 0.9 
0.01 to 0.09

0.500 
0.040

Adaptive Lasso Lambda 0.01 to 0.09 0.670

Random Forest Omega 
#Tress

0.1 to 0.9
1 to 400

0.340 
281

Gradient Boosting 
Machine

#Tress 
Distribution 
Shrinkage

1 to 5000 
Normal 

0.001 to 0.009

19
Bernoulli

0.300

Source: Compiled by authors.

4.2	 Model comparison
Table 3 presents a comparison of the prediction performance of the ML and 
benchmark models for the validation and test set, from September 2014 to 
May 2023. As to the forecast evaluation using the RMSE, the ML models 
succeeded in significantly minimizing the projection error in comparison 
with the benchmark AR model and the three different specifications of 
dynamic factor models.10 Every projection model compared the forecast 
with the full available data set at time t + h with the actual GDP rate growth 
t + h. The models that stand out over the others were the gradient boosting 
machine, LASSO and elastic net , each of which reduced the forecast error 
by around 20% to 25%. 

We also estimated the Diebold–Mariano statistic, which is used to com-
pare the accuracy of two forecast models. According to this statistic,11 most 
of the ML models are statistically significant, in line with previous research 
(Richardson & Mulder, 2018; Varian, 2014; Zhang et al., 2023); most 
showed p-values below 0.05, suggesting that their forecasts are significantly 
different from the actual GDP values. This indicates that the predictions for 
these models are statistically distinguishable from the real outcomes. Adaptive 
LASSO (p=0.126) and random forest (p=0.089) presented higher p-values, 
indicating that their forecasts are not significantly different from the actual 
GDP values at the conventional significance levels. This could suggest these 
models provide more accurate predictions of the real GDP outcomes.

10	 Bánbura & Modugno (2014).
11	 Diebold & Mariano (1995).
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On the other hand, it is important to highlight that the real-time forecasts 
presented in this paper successfully anticipated the economic contraction 
in the Peruvian context associated with by the COVID-19 pandemic in 
March 2020, and also accurately captured the subsequent economic reco-
very period in March of the following year. This illustrates the usefulness 
and effectiveness of using penalty models and/or decision trees to forecast 
high-frequency economic variables.

Table 3 
Evaluation of model and benchmark forecasts 

2014m09–2023m05

Model MAE RMSE RMSE
(Rel. to AR)1 p-value (DM)

Lasso 0,29 0,26 0,10 0,014

Ridge 0,38 0,34 0,13 0,043

Elastic Net 0,33 0,28 0,11 0,039

Adaptive Lasso 0,51 0,68 0,27 0,126

Random Forest 0,4 0,45 0,18 0,089

Gradient Boosting Machine 0,11 0,17 0,07 0,016

Stepwise2 1,66 1,63 0,59 0,001

DFM full3 0,67 0,93 0,36 0,005

DFM best4 0,55 0,72 0,28 0,004

DFM structured5 0,86 1,05 0,41 0,003

Autoregressive model (AR) 2,14 2,55 0,00

1/ RMSE(Model)i/RMSE(AR). 2/ Uses variables within unstructured data and structured selected by 
iteratively adding or removing variables based on statistical criteria. 3/ DFM full uses the 91 variables 
within unstructured as well as structured data. 4/ DFM best uses variables within unstructured data 
and structured selected by the Gibbs sampling as best estimators to predict GDP. 5/ DFM structured 
uses only 56 structured variables.
Source: compiled by authors.
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Figure 3 
Machine learning model projection and GDP
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4.3	 Consistency
To test the consistency of the results and determine whether the ML model 
projections contribute positively to the accuracy of predictions of monthly 
GDP versus the benchmark models, we used the Romer and Romer (2008) 
approach, except we replaced an official’s prediction with a DFM estimation 
that incorporates electricity production as the main leading indicator—a 
popular approach among economic studies departments in Peru. We esti-
mated the following regression model:

	 yt = β1DFMEt + β2MLit + et	 (14)

Where yt represents the real monthly GDP growth, DFMEt is the dynamic 
factor model estimated using electricity production, and MLi is the out-sample 
prediction for each machine learning model. The results obtained indicate 
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that all the projections of machine learning contribute significantly to the 
GDP projection, with the best model being the gradient boosting machine in 
line with the Akaike criterion. Likewise, analyzing the estimation errors of the 
models generated by equation (14), we applied the test proposed by Harvey et 
al. (1997) with the long-run variance autocorrelation estimator proposed by 
Diebold and Mariano (1995) to evaluate the accuracy gains in the estimates 
from the results of the ML models. The p−value is shown in the last column 
of Table 4, where the alternative hypothesis is that the models in equation 
(14), which include the ML model projection, are more accurate than the 
predictions under the dynamic factor model alone. These values indicate the 
superior accuracy of the models that incorporate ML at a 10% confidence 
level in the case of the LASSO and ridge models, but at 5% in the others.

Table 4 
βe2 value and validation criteria

Model Estimated value AIC p-value p-value (DM)

Lasso 0,714 520,32 0,00 0,079

Ridge 0,936 554,73 0,00 0,057

Elastic Net 0,839 549,80 0,00 0,055

Adaptive Lasso 0,703 517,49 0,00 0,046

Random Forest 0,783 534,20 0,00 0,049

Gradient Boosting Machine 0,810 492,09 0,00 0,041

Source: Compiled by authors.

5.	 Conclusions

In this study we evaluated the prediction accuracy of the most popular 
ML algorithms to nowcast—tracking in real time—the monthly growth 
rate of Peruvian GDP. The analysis window was between 2008 and 2023 
and worked with several leading indicators to assess the dynamic of GDP 
components measured by way of the expenditure and productive sector 
approach. Furthermore, we enriched our approach by incorporating a sen-
timent data index built through Google Trends, which have proven effective 
in estimating advanced economic activity. The ML approach allowed the use 
of 91 variables simultaneously, incorporating structured data non-structured 
data, including a larger dataset for the Peruvian GDP prediction case. The 
evaluation results and consistency exercise provide evidence that the positive 
contribution of ML models and sentiment data significantly improve the 
model accuracy and allow the early detection of periods of high volatility—
an aspect that conventional models often fail to capture.
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Our results shed light on how ML can outperform AR, stepwise and 
DFM models in prediction accuracy, which opens up a new agenda for 
emerging economies to improve the forecasting of relevant macroeconomic 
variables such as consumption, employment, and investment, among others.

These models have been implemented by the Department of Macro-
economic Projections in the Ministry of Economics and Finance of Peru, 
perform successfully, and are incorporated into monthly activities; therefore, 
we would like to suggest three specific outstanding agendas based on our 
application expertise. First, there is a need to analyze the marginal prediction 
gains from the inclusion of unstructured data in reducing forecast error, since 
our results have shown improvements in accuracy. However, a key question 
arises: Would the period analyzed influence the results? Between 2004 and 
2023, which includes high volatility events such as the pandemic, the global 
financial crisis, and climate shocks in 2017 and 2023, ML models with 
unstructured data gained in predictive capacity by track daily frequency data 
from Google Trend searches. This question could be tested by performing 
a variance analysis of the projection errors by comparing ML models with 
other more traditional ones during a period of relative normality and other 
periods of crisis. Second, in the estimates we observed the unsynchronized 
availability of approximately 45% of the dataset variables (91), which raises 
the question of whether consistent results would be equally obtained with a 
smaller number of variables. This proportion could be evaluated in subse-
quent studies by reducing the software requirements. Third, the treatment 
of the unstructured data could be improved; in this study we used a simple 
and didactic management of non-structured data, but monthly weighting 
of searched words in Google Trends could be considered to smooth the high 
variability related to this type of data.
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6.	 Appendix

Table 5 
Literature on Nowcasting

Author Year Methodology Country

Literature International

Banbura and others 2013 DFM Europe

Evans 2005 DFM US

Giannone and others 2008 DFM US

Nowcasting with machine learning

Richardson and others 2018 Various models ML New Zealand

Giannone and others 2008 DFM US

Ghosh and Ranjan 2023 Various ML India

Muchisha and others 2020 Various ML vs DFM Indonesia

Zhang, Ni and Xu 2023 Various ML China

Kant and others 2022 Various ML Netherlands

Suphaphiphat and others 2022 Various ML Europe

Nowcasting with big data

Blei, Ng and Jordan 2003 LDA US

Athey, Mobius and Pal 2017 Google News Spain

Woloszko 2020 Google Trends USA

Niesert and otros 2020 Google Trends Advanced Economies

Peruvian main references

Escobal and Torres 2002 DFM Peru

Pérez Forero 2016 DFM Peru

Kapsoli and Bencich 2002 Neuronal Networks Peru

Pérez Forero 2018 Bayesian VAR Peru

Etter and Graff 2011 Surveys Peru

Martinez and Quineche 2014 Neuronal Networks Peru

Source: Own elaboration.
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Table 6 
List of no structured variables included in the model

Unstructured variable details

Units of Measure Frequency Source

Search Index (0 to 100) Daily Google Trends

Variables

1.- Searched Words on Economic

Inflation Recession

2.- Searched Words on Consumption

Kia Toyota Movies

Restaurants Credits Loans

Mortgages Deals

3.- Searched Words on Labor Market

Employment Unemployment  Labor

4.- Searched Words on Sectorial Industry

Mining Investment

5.- Searched Words on Current Situation

Peruvian Crisis Bankruptcy Economy

Economic Crisis

6.- Searched Words on Real Estate Market

Land Real Estate

7.- Searched Words on Politics

Elections

8.- Searched Words on Tourism

Travel Machu Picchu Flights

Visa Flights to the US Accommodations

Hotels Vacations

9.- Searched Words on Bonds and Pensions

Bonds CTS AFP

10.- Searched Words on Weather and Natural Phenomena

Rains ENSO Droughts

Frosts Huaico

Source: compiled by authors.
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Table 7 
List of structured variables included in the model (a)

No. Variable Units of Measure Frequency Source

Main Indicator

1 GDP Index 2007 = 100 Monthly INEI

Consumption Indicators

2 Credit S/ Millions Monthly BCRP

3 Credit US$ Millions Monthly BCRP

4 Credit (constant exchange rate) S/ Millions Monthly BCRP

5 Consumer credits S/ Millions Monthly BCRP

6 Mortgage Loans S/ Millions Monthly BCRP

7 Deposits S/ Millions Monthly BCRP

8 Deposits S/ Millions Monthly BCRP

9 Sales of chickens Metric Tons Dayly MIDAGRI

10 Consumer Confidence Index Points Monthly Apoyo Consultoria

Activity Indicators

11 Electricity Production Monthly INEI

12 Hydrocarbon Production Dayly MINEM

13 3-Month Economic Expectations Points Monthly BCRP

14 Oil B/D Dayly MINEM

15 Natural Gas MCF Dayly MINEM

Investment Indicators

16 Domestic Cement Consumption Index Weekly INEI

17 Import of Intermediate Inputs Index Weekly INEI

18 Import of Capital Goods Index Weekly INEI

Labor Market Indicators

19 Employed Labor Force Thousands Monthly INEI

20 Properly Employed Population1 Thousands Monthly INEI

Public Investment Indicators

21 Non-Financial Gov. Expenditures S/ Millions Monthly BCRP

22 IAFO Index Monthly INEI

Foreign Trade Indicators

23 Volume of Imported Inputs Index Monthly INEI

24 Terms of Trade Index Monthly BCRP

25 IPX Index Monthly BCRP

26 IPM Index Monthly BCRP
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Financial Indicators

27 General Stock Market Index2 Percentages Dayly Bloomberg

28 Liquidity Millions of Soles Monthly BCRP

Monetary Indicators

29 CPI Index Monthly INEI

30 Non Food and Energy Price Index Index Monthly BCRP

31 Wholsale Price Index Index Monthly BCRP

32 Core CPI Index Monthly BCRP

1/ Metropolitan Lima. 2/ Lima
Source: compiled by authors.
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Table 8 
List of structured variables included in the model (b)

No. Variable Units of Measure Frequency Source

International Indicators

33 Multilateral Real Exchange Rate (2009=100) Monthly BCRP

34 EMBIG Perú Pbs Dayly BCRP

35 Oil WTI Dollars per Barrel Dayly Bloomberg

36 USIPC Index Monthly FRED

37 Industrial Production Index YoY Quarterly Bloomberg

38 Copper cUS$/lb. Dayly Bloomberg

39 Gold US$/oz. tr. Dayly Bloomberg

40 US Manufacturing PMI Points Monthly Bloomberg

41 FED Interest Rate (Upper Limit) Percentages Monthly Bloomberg

42 VIX Index Percentages Dayly Bloomberg

43 Spread 2Y-5Y Monthly Bloomberg

44 China Industrial Production YoY Monthly Bloomberg

45 PPI by All Commodities (1982=100) Monthly FRED

Climate Indicators

46 ATSM Degrees Celsius Monthly IMARPE

Fisehry Indicators

47 Anchoveta Landing Metric Tons Dayly IMARPE

48 Logarithm of Anchoveta Landing Dayly Own elaboration

49 Anchoveta Landing1 Dayly Own elaboration

50 Variation Anchoveta Landing2 Dayly Own elaboration

Agricultural Indicators

51 Paddy Rice production Tons Monthly MIDAGRI

52 Potato production Tons Monthly MIDAGRI

53 Onion production Tons Monthly MIDAGRI

54 Tomato production Tons Monthly MIDAGRI

1/ Seasonally Adjusted. 2/ Seasonally Adjusted.
Source: compiled by authors.
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Figure 4 
Gibb sampling (2004-2023) - probability of inclusion in optimal model
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Figure 5 
Gibb sampling (2004-2019) - probability of inclusion in optimal model
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Figure 6 
LASSO Optimal Parameters
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Source: compiled by authors.

Figure 7 
Ridge Optimal Parameters
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Figure 8 
Elastic Net Optimal Parameters
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Figure 9 
Adaptive LASSO Optimal Parameters
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Figure 10 
Dynamic correlations of the structured variables

N° Variables
Time

t-3 t-2 t-1 t t+1 t+2 t+3

1 Electricity production 0.5 0.6 0.6 0.8 0.6 0.5 0.4

2 Imports of capital goods 0.5 0.6 0.7 0.7 0.7 0.8 0.7

3 Deposit in local currency 0.6 0.6 0.6 0.7 0.7 0.7 0.6

4 Internal cement consumption 0.6 0.6 0.6 0.7 0.5 0.5 0.4

5 Import of raw materials 0.6 0.6 0.6 0.7 0.5 0.5 0.4

6 Consumer credits 0.4 0.4 0.5 0.6 0.6 0.7 0.7

7 Producer Price Index by Commodity 0.5 0.5 0.6 0.6 0.6 0.5 0.5

8 Price index of imports 0.5 0.5 0.6 0.6 0.5 0.5 0.4

9 Total credits 0.3 0.4 0.5 0.6 0.6 0.6 0.6

10 Wholesale CPI 0.2 0.3 0.4 0.5 0.6 0.6 0.6

11 Natural gas production 0.3 0.4 0.4 0.5 0.5 0.5 0.5

12 China industrial production 0.6 0.6 0.6 0.5 0.4 0.4 0.3

13 Credits in foreing currency 0.4 0.4 0.5 0.5 0.5 0.5 0.5

14 Consumption expectations 0.6 0.6 0.5 0.5 0.4 0.3 0.2

15 US inflation 0.4 0.4 0.5 0.5 0.5 0.4 0.4

16 Import of intermediate inputs 0.6 0.5 0.5 0.5 0.4 0.3 0.3

17 Liquidity 0.2 0.2 0.3 0.5 0.5 0.6 0.6

18 Oil price 0.5 0.5 0.5 0.4 0.4 0.3 0.3

19 Gold price 0.5 0.4 0.4 0.4 0.3 0.3 0.2

20 Export price index 0.5 0.5 0.4 0.4 0.3 0.2 0.1

21 Suitable employment Metropolitan Lima 0.4 0.4 0.4 0.4 0.3 0.3 0.2

22 US Production Index 0.4 0.4 0.4 0.4 0.3 0.2 0.2

23 US Manufacturing Index 0.4 0.4 0.4 0.4 0.3 0.2 0.2

24 Mortgage credits 0.3 0.3 0.3 0.4 0.4 0.4 0.5

25 Non-financial expenditure of the GG 0.4 0.4 0.3 0.3 0.2 0.1 0.1

26 Labor force 0.4 0.4 0.4 0.3 0.3 0.2 0.1

27 Credits in soles 0.1 0.2 0.3 0.3 0.4 0.4 0.4

28 Progress index of public works (IAFO) 0.1 0.2 0.1 0.3 0.2 0.2 0.2

29 Anchovy Landing (SA) 0.1 0.0 0.1 0.3 0.1 0.1 0.0

30 Copper price 0.4 0.4 0.3 0.3 0.2 0.1 0.0

31 Consumer price index (CPI) -0.1 0.0 0.1 0.2 0.3 0.4 0.4

32 Hydrocarbon production -0.1 0.0 0.0 0.2 0.1 0.2 0.2

33 Volatility index 0.0 0.1 0.1 0.2 0.2 0.3 0.3
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34 Anchovy Landing 0.0 0.0 0.0 0.2 0.1 0.1 0.0

35 Tomato production 0.1 0.1 0.2 0.1 0.2 0.2 0.1

36 Logarithm of Anchoveta Landing 0.1 0.1 0.1 0.1 0.1 0.1 0.1

37 Terms of trade 0.3 0.3 0.2 0.1 0.0 -0.1 -0.2

38 Rice -0.1 -0.1 0.0 0.1 0.0 0.0 0.1

39 Fed rate 0.0 0.0 0.1 0.1 0.0 0.0 0.0

40 Onion production 0.2 0.2 0.1 0.0 0.1 0.0 0.0

41 Oil production -0.2 -0.2 -0.1 0.0 -0.1 0.1 0.1

42 Chicken price 0.1 0.1 0.1 0.0 0.0 -0.1 -0.1

43 Potato production 0.0 0.0 0.0 0.0 0.0 -0.1 0.0

44 LSE index 0.2 0.1 0.1 0.0 -0.1 -0.1 -0.2

45 Emerging Market Bond Index 0.2 0.1 0.0 -0.1 -0.1 -0.2 -0.2

46 Consumption expectations 0.1 0.0 -0.1 -0.1 -0.2 -0.2 -0.2

47 Underlying CPI -0.3 -0.2 -0.2 -0.1 0.0 0.1 0.2

48 Multilateral real exchange rate -0.2 -0.2 -0.1 -0.1 -0.1 -0.1 -0.1

49 Variation Anchovy Landing (SA) -0.1 -0.1 -0.2 -0.1 -0.2 -0.1 -0.2

50 SPREAD -0.1 -0.2 -0.1 -0.1 -0.1 -0.1 -0.1

51 Deposits in foreign currency -0.3 -0.3 -0.3 -0.2 -0.1 0.0 0.0

52 Sea Surface Temperature Anomaly -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2

53 CPI without food and energy -0.6 -0.6 -0.5 -0.5 -0.4 -0.3 -0.2

   High correlation    Low correlation

Source: compiled by authors.
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Figure 11 
Correlations of the main nonstructured variables
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