Nowcasting del PBI mensual peruano con machine learning y datos no estructurados

Autores/as

  • Juan Tenorio Universidad Peruana de Ciencias Aplicadas, Perú
  • Wilder Pérez Universidad Científica del Sur, Perú

DOI:

https://doi.org/10.21678/apuntes.99.2189

Palabras clave:

nowcasting, aprendizaje automático, indicador mensual

Resumen

Los modelos de nowcasting basados en algoritmos de Machine Learning (ML) ofrecen una ventaja notable para la toma de decisiones en los sectores público y privado debido a su flexibilidad y capacidad para manejar grandes cantidades de datos. Este documento presenta modelos de pronóstico en tiempo real para la tasa de crecimiento mensual del PIB peruano. Estos modelos combinan indicadores macroeconómicos estructurados con variables de sentimiento no estructurados de alta frecuencia. El análisis comprende desde enero de 2007 hasta mayo de 2023, abarcando un conjunto de 91 indicadores económicos principales. Se evaluaron seis algoritmos de ML para identificar los predictores más eficaces de cada modelo. Los resultados subrayan la notable capacidad de los modelos de ML para producir predicciones más precisas y previsoras que los modelos convencionales de series temporales. En particular, Gradient Boosting Machine, LASSO y Elastic Net destacaron por sus resultados, logrando una reducción de los errores de predicción de entre el 20% y el 25% en comparación con los modelos AR y varias especificaciones de DFM. Estos resultados podrían estar influenciados por el periodo de análisis, que incluye acontecimientos de crisis con un alto grado de incertidumbre, en los que los modelos ML con datos no estructurados mejoran la significación.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Araujo, D., Bruno, G., Marcucci, J., Schmidt, R., & Tissot, B. (2023). Machine learning: applications in central banking. Journal of AI, Robotics & Workplace Automation, 2(3), 271–293.

Armstrong. (2001). Principles of forecasting: A handbook for researchers and practitioners (Vol. 30). Springer.

Aruoba, S. B., Diebold, F. X., & Scotti, C. (2009). Real-time measurement of business conditions. Journal of Business & Economic Statistics, 27(4), 417-427.

Athey, S. (2018). The impact of machine learning on economics intelligence: An agenda. In The economics of artificial (pp. 507-547). University of Chicago Press.

Bánbura, M., & Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data. (W. O. Library, Ed.) Journal of applied econometrics, 29(1), 133-160.

Bánbura, M., & Rünstler, G. (2011). A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting gdp. International Journal of Forecasting, 27(2), 333-346.

Bánbura, M., Giannone, D., Modugno, M., & Reichlin, L. (2013). Now-casting and the real-time data flow. In Elsevier (Ed.), Handbook of economic forecasting (Vol. 2, pp. 195-237).

Barrios, J. J., Escobar, J., Leslie, J., Martin, L., & Peña, W. (2021). Nowcasting para predecir actividad económica en tiempo real: Los casos de Belice y El Salvador. Inter-American Development Bank.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003, Jan). Latent dirichlet allocation. Journal of machine Learning research, 3, 993-1022.

Boehmke, B., & Greenwell, B. (2020). Chapter 12: Gradient boosting. In Hands-on machine learning with R. Chapman & Hall.

Bok, B., Caratelli, D., Giannone, D., Sbordone, A. M., & Tambalotti, A. (2018). Macroeconomic nowcasting and forecasting with big data. Annual Review of Economics, 10, 615-643.

Bolivar, O. (2024). Gdp nowcasting: A machine learning and remote sensing data-based approach for Bolivia. Latin American Journal of Central Banking, 5(3).

Breiman, L. (2001). Random forests. In Machine learning (Vol. 45, pp. 5-32). Springer.

Brownlee, J. (2016). Bagging and random forest ensemble algorithms for machine learning. In Master Machine learning algorithms (pp. 4-22). Machine Learning Mastery.

Caruso, A. (2018). Nowcasting with the help of foreign indicators: The case of Mexico. In Economic Modelling (Vol. 69, pp. 160-168). Elsevier.

Chakraborty, C., & Joseph, A. (2017). Machine learning at central banks. Bank of England working paper.

Corona, F., González-Farías, G., & López-Pérez, J. (2022). Timely estimates of the monthly Mexican economic activity. Journal of Official Statistics, 38(3), 733-765.

Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, 13(3), 253-263.

Döpke, J., Fritsche, U., & Pierdzioch, C. (2017). Predicting recessions with boosted regression trees. International Journal of Forecasting, 33(4), 745-759.

Doz, C. G. (2011). A quasi–maximum likelihood approach for large, approximate dynamic factor models. Review of economics and statistics, 94(4), 188-205.

Doz, C. G. (2011). A two-step estimator for large approximate dynamic factor models based on kalman filtering. Journal of Econometrics, 164(1), 188-205.

Eberendu, A. C., & al., e. (2016). Unstructured data: An overview of the data of big data. International Journal of Computer Trends and Technology, 38(1), 46-50.

Einav, L., & Levin, J. (2014). The data revolution and economic analysis. Innovation Policy and the Economy, 14(4), 1-24.

Escobal D’Angelo, J., & Torres, J. (2002). Un sistema de indicadores lideres del nivel de actividad para la economía peruana.

Etter, R. G., & al., e. (2011). A composite leading indicator for the peruvian economy based on the bcrp’s monthly business tendency surveys (tech. rep.). Banco Central de Reserva del Perú.

Evans, M. (2005). Where are we now? real-time estimates of the macro economy.

Forero, F. J., Aguilar, O. J., & Vargas, R. F. (2016). Un indicador lider de actividad real para Perú.

Gálvez-Soriano, O. d. (2020). Nowcasting Mexico’s quarterly GDP using factor models and bridge equations. Estudios Económicos (México, DF), 35(2), 213-265.

Garcia-Donato, G., & Martinez-Beneito, M. A. (2013). On sampling strategies in bayesian variable selection problems with large model spaces. Journal of the American Statistical Association, 108(501), 340-352.

Ghosh, S., & Ranjan, A. (2023). A machine learning approach to GDP nowcasting: An emerging market experience. Buletin Ekonomi Moneter dan Perbankan, 26, 33-54.

Giannone, D., Reichlin, L., & Small, D. (2008). Nowcasting: The real-time informational content of macroeconomic data. Journal of monetary economics, 55(4), 665-676.

Giglio, S., Kelly, B., & Xiu, D. (2022). Factor models, machine learning, and asset pricing. Annual Review of Financial Economics, 14, 337-368.

González-Astudillo, M., & Baquero, D. (2019). A nowcasting model for Ecuador: Implementing a time-varying mean output growth. Economic Modelling, 82, 250-263.

Green, K. C., & Armstrong, S. (2015). Simple versus complex forecasting: The evidence. Journal of Business Research, 68(8), 1678-1685.

Harvey, D., Leybourne, S., & Newbold, P. (1997). Testing the equality of prediction mean squared errors. International Journal of Forecasting, 13(2), 281-291.

Kant, D., Pick, A., & deWinter, J. (2022). Nowcasting GDP using machine learning methods. Nederlandsche Bank Working Paper.

Kapsoli Salinas, J., & Bencich Aguilar, B. (2002). Indicadores lideres, redes neuronales y predicción de corto plazo. Pontificia Universidad Católica del Perú. Departamento de Economía.

Liu, Z. Z. (2014). The doubly adaptive lasso methods for time series analysis. The University of Western Ontario (Canada).

Longo, L., Riccaboni, M., & Rungi, A. (2022). A neural network ensemble approach for gdp forecasting. Journal of Economic Dynamics and Control, 134.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and machine learning forecasting methods: Concerns and ways forward. PloS one, 13(3), e0194889.

Martınez, M., & Quineche, R. (2014). Un indicador lıder para el nowcasting de la actividad económica del perú (tech. rep.). Mimeo.

Medeiros, M. C., Vasconcelos, G. F., Veiga, Á., & Zilberman, E. (2021). Forecasting inflation in a data-rich environment: The benefits of machine learning methods. Journal of Business & Economic Statistics, 39(1), 98-119.

Muchisha, N. D., Tamara, N., Andriansyah, A., & Soleh, A. M. (2021). Nowcasting Indonesia’s GDP growth using machine learning algorithms. Indonesian Journal of Statistics and Its Applications, 5(2), 355-368.

Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7(21).

Pérez Forero, F. (2018). Nowcasting Peruvian GDP using leading indicators and bayesian variable selection (tech. rep.). Banco Central de Reserva del Perú.

Richardson, A., & Mulder, T. (2018). Nowcasting New Zealand GDP using machine learning algorithms. CAMA Working Paper.

Romer, C., & Romer, D. (2008). The fomc versus the staff: Where can monetary policymakers add value? American Economic Review, 98(2), 230-235.

Rusnák, M. (2016). Nowcasting Czech GDP in real time. Economic Modelling, 54, 26-39.

Scott, S. L., & Varian. (2013). Bayesian variable selection for nowcasting economic time series (tech. rep.). National Bureau of Economic Research.

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. Advances in neural information processing systems, 25.

Stock, J. H., & Watson, M. W. (1989). New indexes of coincident and leading economic indicators. NBER macroeconomics annual, 4, 351-394.

Suphaphiphat, N., Wang, Y., & Zhang, H. (2022). A scalable approach using DFM, machine learning and novel data, applied to european economies.

Tenorio, J., & Pérez, W. . (2023). GDP nowcasting with machine learning and unstructured data to Peru. Perueconomics, (No. 197).

Tenorio, J., & Perez, W. (2024). GDP nowcasting with machine learning and unstructured data. (No. 2024-003).

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1), 267-288.

Tiffin, M. A. (2016). Seeing in the dark: A machine-learning approach to nowcasting in Lebanon. International Monetary Fund.

Varian, H. (2014). Machine learning and econometrics. Slides package from talk at University of Washington.

Woloszko, N. (2020). A weekly tracker of activity based on machine learning and google trends.

Zhang, Q., Ni, H., & Xu, H. (2023). Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms. Economic Modelling, 122, 106204.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American statistical association, 101(476), 1418-1429.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67(2), 301-320.

Descargas

Publicado

2025-07-30

Cómo citar

Tenorio, J., & Pérez, W. (2025). Nowcasting del PBI mensual peruano con machine learning y datos no estructurados. Apuntes. Revista De Ciencias Sociales, 52(99). https://doi.org/10.21678/apuntes.99.2189

Número

Sección

Artículos